Latest Post
Showing posts with label CIRRHOSIS. Show all posts
Showing posts with label CIRRHOSIS. Show all posts

High-intensity sound waves may aid regenerative medicine

Written By Unknown on Thursday, January 15, 2015 | 6:03 PM

This is a cross section through a histotripsy lesion created in bovine liver tissue with the liquified cellular contents washed out revealing the remaining extracellular matrix. The scale bar represents 5mm. Credit: T.Khoklova/UW
Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's significant obstacles. The researchers will present their technique at the 168th meeting of the Acoustical Society of America (ASA), held October 27-31, 2014, at the Indianapolis Marriott Downtown Hotel.

The development of the new technique started with somewhat of a serendipitous discovery. The University of Washington team had been studying boiling histotripsy -- a technique that uses millisecond-long bursts of high-intensity ultrasound waves to break apart tissue -- as a method to eliminate cancerous tumors by liquefying them with ultrasound waves. After the sound waves destroy the tumors, the body should eliminate them as cellular waste. When the researchers examined these 'decellularized' tissues, however, they were surprised by what the boiling left intact.

"In some of our experiments, we discovered that some of the stromal tissue and vasculature was being left behind," said Yak-Nam Wang, a senior engineer at the University of Washington's Applied Physics Laboratory. "So we had the idea about using this to decellularize tissues for tissue engineering and regenerative medicine."

The structure that remains after decellularizing tissues is known as the extracellular matrix, a fibrous network that provides a scaffold for cells to grow upon. Most other methods for decellularizing tissues and organs involve chemical and enzymatic treatments that can cause damage to the tissues and fibers and takes multiple days. Histrostipsy, on the other hand, offers the possibility of fast decellularization of tissue with minimal damage to the matrix.

"In tissue engineering, one of the holy grails is to develop biomimetic structures so that you can replace tissues with native tissue," Wang said. Stripping away cells from already developed tissue could provide a good candidate for these structures, since the extracellular matrix already acts as the cellular framework for tissue systems, Wang said.

Due to its bare composition, the matrix also induces only a relatively weak immune response from the host. The matrix could then theoretically be fed with stem cells or cells from the same person to effectively re-grow an organ.

"The other thought is that maybe you could just implant the extracellular matrix and then the body itself would self-seed the tissues, if it's just a small patch of tissue that you're replacing," Wang said. "You won't have any immune issues, and because you have this biomimetic scaffold that's closer to the native tissue, healing would be better, and the body would recognize it as normal tissue."

Wang is currently investigating decellularization of kidney and liver tissue from large animals. Future work involves increasing the size of the decellularized tissues and assessing their in-vivo regenerative efficacy.

Mechanics of cells' long-range communication modeled by researchers

Written By Unknown on Thursday, December 25, 2014 | 3:35 AM

As fibrosis progresses, "bridges" of extracellular matrix appear between cells. Credit: Image courtesy of University of Pennsylvania
Interdisciplinary research at the University of Pennsylvania is showing how cells interact over long distances within fibrous tissue, like that associated with many diseases of the liver, lungs and other organs.

By developing mathematical models of how the collagen matrix that connects cells in tissue stiffens, the researchers are providing insights into the pathology of fibrosis, cirrhosis of the liver and certain cancers.

Tissue stiffness has long been know to be clinically relevant in these diseases, but the underlying changes that alter the mechanics of tissues are poorly understood. Consisting of a complex network of fibers, tissues have proven difficult to simulate and model beyond local, neighbor-to-neighbor interactions.

Developing a better understanding of the large-scale mechanical changes that occur over longer distances, specifically the process by which the extracellular matrix is pulled into compact, highly-aligned "bridges," could eventually form the basis of treatments for related diseases.

Vivek Shenoy, professor in the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science, has led an interdisciplinary research team to tackle this problem, authoring a pair of papers that were published in Biophysical Journal.

One, "Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations" involved developing simulations that extrapolated the overall remodeling of the extracellular matrix based on the behavior of neighboring pairs of cells. The other, "Long Range Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers," took a more mathematical approach, producing a coarse-grained model of this remodeling that could be more broadly applied to fibrotic tissue.

"We're trying to understand how force is transmitted in tissues," Shenoy said. "Cells are the ones that generate force, and it has to be transmitted through what surrounds the cell, the extracellular matrix, or ECM. But imagine trying to model the ECM by trying to keep track of each collagen fibril in your liver; there are tens of millions of those. So we're taking what we learn from simulating those networks to turn it into a model that captures the main features with only a few parameters.

"The key here is the mechanics," he said. "In particular, how does ECM, as a fibrous material, differ from solids, gels and other materials that are better studied."

Rebecca Wells, an associate professor in Penn's Perelman School of Medicine and a co-author on the latter paper, provided insight into the clinical relevance of the mechanics that characterize ECM-related disorders.

"Fibrosis occurs when you have an injury and the tissue responds by depositing ECM, forming scar tissue," Wells said. "In liver fibrosis, the liver can stiffen by up to an order of magnitude, so measuring stiffness is a common diagnostic test for the disease. Increased stiffness also occurs in cancer, where tumors are typically stiffer than the surrounding tissue."

Existing experimental evidence showed that mechanical forces were at play in the changes in both fibrosis and cancer and that these forces were important to their development and progression but could not explain the long-ranging changes cells were able to produce to change their environments. When put in tissue-simulating gels, cells can deform their immediate surroundings but are unable to pull on more distant cells. In real, ECM-linked tissue, however, cells' range of influence can be up to 20 times their own diameter.

"If you look at a normal tissue," Shenoy said, "you see the cells are more rounded, and the network of ECM fibers is more random. But as cancer progresses, you see more elliptical cells, more ECM, and you see that the ECM fibers are more aligned. The cells are the ones generating force, so they're contracting and pulling the fibers, stretching them out into bridges."

"That's also the pathology of cirrhosis," Wells said. "My group had been looking at the early mechanical changes associated with liver fibrosis, which progresses to cirrhosis, but then, by collaborating with Vivek, we started to wonder if these large scale changes in the architecture of the liver could have a mechanical basis and if something similar to what is seen in gels might be occurring in the liver. This is a new way of approaching the problem, which has largely been thought of as biochemical in origin. And there are other tissues where it is probably the same thing, the lung, for example."

The researchers found that the critical difference between the existing models and ECM's long-range behavior was rooted in its elastic properties. Materials with linear elasticity cannot transmit force over the distances observed, but the team's simulations showed that nonlinear elasticity could arise from the ECM's fibrous structure.

"In our model, every component is linearly elastic," Shenoy said, "but the collective behavior is nonlinear; it emerges because of the connectivity. When you deform the network, it's easy to bend the 'sticks' that represent collagen fibers but hard to stretch them. When you deform it to a small extent, it's all the bending of the fibers, but, as you deform further, it can't accommodate bending any more and moves over to stretching, forming the bridges we see in the tissue."

Such simulations can't predict which fibers will end up in which bridge, necessitating the coarser-grained model the researchers described in their second paper. By showing the point at which linear elasticity gives way to its nonlinear counterpart, the team produced a more complete picture of how the alignment of collagen bridges under tension transmit force between distant cells.

Further studies are needed to elucidate the feedback loops between ECM stiffening and cell contraction strength. The team is conducting physical experiments to confirm and refine their in silico findings.

"Right now," Wells said," we're hypothesizing that the mechanical interactions modeled by the Shenoy lab explain aspects of cancer and fibrosis, and we're developing the experimental systems to confirm it with real cells."

Source: University of Pennsylvania
 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. The planet wall - All Rights Reserved
Template Created by Easy Blogging Published by Mas Template
Proudly powered by Blogger