Latest Post
Showing posts with label GENETIC SCIENCE. Show all posts
Showing posts with label GENETIC SCIENCE. Show all posts

Software models more detailed evolutionary networks from genetic data

Written By Unknown on Wednesday, January 7, 2015 | 11:07 PM

Phylogenetic networks depict the movement of genetic sequences from one species to another as a means of showing where horizontal gene transfer may have taken place. Software by scientists at Rice University aims to reveal far more about species’ evolutionary histories than traditional tree models are able to. Credit: Luay Nakhleh/Rice University
The tree has been an effective model of evolution for 150 years, but a Rice University computer scientist believes it's far too simple to illustrate the breadth of current knowledge.

Rice researcher Luay Nakhleh and his group have developed PhyloNet, an open-source software package that accounts for horizontal as well as vertical inheritance of genetic material among genomes. His "maximum likelihood" method, detailed this month in the Proceedings of the National Academy of Sciences, allows PhyloNet to infer network models that better describe the evolution of certain groups of species than do tree models.

"Inferring" in this case means analyzing genes to determine their evolutionary history with the highest probability -- the maximum likelihood -- of connections between species. Nakhleh and Rice colleague Christopher Jermaine recently won a $1.1 million National Science Foundation grant to analyze evolutionary patterns using Bayesian inference, a statistics-based technique to estimate probabilities based on a data set.

To build networks that account for all of the genetic connections between species, the software infers the probability of variations that phylogenetic trees can't illustrate, such as horizontal gene transfers. These transfers circumvent simple parent-to-offspring evolution and allow genetic variations to move from one species to another by means other than reproduction.

Biologists want to know when and how these transfers happened, but tree structures conceal such information. "When horizontal transfer occurs, as with the hybridization of two species, the tree model becomes inadequate to describe the evolutionary history, and networks that incorporate horizontal gene transfer become the more appropriate model," Nakhleh said.

Nakhleh's Java-based software accounts for incomplete lineage sorting, in which clues to gene evolution that don't match the established lineage of species appear in the genetic record.

"We are the first group to develop a general model that will allow biologists to estimate hybridization while accounting for all these complexities in evolution," Nakhleh said.
Most existing programs for phylogenetics (the study of evolutionary relationships) ignore such complexities. "They end up overestimating the amount of hybridization," Nakhleh said. 
"They start seeing lots of complexities in the data and say, 'Oh, it's complex here; it must be hybridization,' and end up inferring too much. Our method acknowledges that part of the complexity has nothing to do with hybridization; it has to do with other random processes that happened during evolution."

The Rice researchers used two data sets to test the new program. One, a computer-generated set of data that mimics a realistic model of evolution, allowed them to evaluate the accuracy of the program. The second involved multiple genomes of mice found across Europe and Asia. "There have been stories about mice hybridizing," Nakhleh said. "Now that we have the first method to allow for systematic analysis, we ran it on a very large amount of data from five mouse samples and we detected hybridization" -- most notably in the presence of a genetic signal from a mouse in Kazakhstan that found its way to mice in France and Germany, he said.

Nakhleh hopes evolutionary biologists will use PhyloNet to take a fresh look at the massive amount of genomic data collected over the past few decades. "The exciting thing for me about this is that biologists can now systematically go through lots of data they have generated and check to see if there has been hybridization."

Visualizing DNA double-strand break process for the first time

Written By Unknown on Tuesday, December 23, 2014 | 5:16 AM

The enzyme I-DmoI (purple) is specifically associated to the double strand of DNA (yellow and green). Credit: CNIO
Scientists from the Spanish National Cancer Research Centre (CNIO), led by Guillermo Montoya, have developed a method for producing biological crystals that has allowed scientists to observe --for the first time-- DNA double chain breaks. They have also developed a computer simulation that makes this process, which lasts in the order of millionths of a second, visible to the human eye. The study is published today by the journal Nature Structural & Molecular Biology.

"We knew that enzymes, or proteins, endonucleases, are responsible for these double strand breaks, but we didn't know exactly how it worked until now," said Montoya. "In our study, we describe in detail the dynamics of this basic biological reaction mediated by the enzyme I-Dmol. Our observations can be extrapolated to many other families of endonucleases that behave identically."

DNA breaks occur in several natural processes that are vital for life: mutagenesis, synthesis, recombination and repair. In the molecular biology field, they can also be generated synthetically. Once the exact mechanism that produces these breaks has been uncovered, this knowledge can be used in multiple biotechnological applications: from the correction of mutations to treat rare and genetic diseases, to the development of genetically modified organisms.

Slow-motion reaction

Enzymes are highly specialised dynamic systems. Their nicking function could be compared, said Montoya, to a specially designed fabric-cutting machine that "it would only make a cut when a piece of clothing with a specific combination of colours passed under the blade."
In this case, researchers concentrated on observing the conformational changes that occurred in the I-Dmol active site; the area that contains the amino acids that act as a blade and produces DNA breaks.

By altering the temperature and pH balance, the CNIO team has managed to delay a chemical reaction that typically occurs in microseconds by up to ten days. Under those conditions, they have created a slow-motion film of the whole process.

"By introducing a magnesium cation we were able to trigger the enzyme reaction and subsequently to produce biological crystals and freeze them at -200ºC," said Montoya. "In that way, we were able to collect up to 185 crystal structures that represent all of the conformational changes taking place at each step of the reaction."

Finally, using computational analysis, the researchers illustrated the seven intermediate stages of the DNA chain separation process. "It is very exciting, because the elucidation of this mechanism will give us the information we need to redesign these enzymes and provide precise molecular scissors, which are essential tools for modifying the genome," he concluded.

On a safari through the genome: Genes offer new insights into the distribution of giraffes

Three young, male Angola giraffes. Credit: © Julian Fennessy, GCF
The Giraffe (Giraffa camelopardalis), a symbol of the African savanna and a fixed item on every safari's agenda, is a fascinating animal. However, contrary to many of the continent's other wild animals, these long-necked giants are still rather poorly studied. Based on their markings, distribution and genome, nine subspecies are recognized -- including the two subspecies Angola Giraffe (Giraffa c. angolensis) and South African Giraffe (Giraffa c. giraffa).

South African Giraffes occur farther north than previously assumed

Like most other giraffes, these subspecies are now mainly found in nature reserves. Until recently, scientists assumed a clear demarcation of their ranges: Angola Giraffes occur in Namibia and northern Botswana, while South African Giraffes reside in southern Botswana and South Africa. "However, according to our studies, the distribution areas prove to be much more complex. South African Giraffes also occur in northeastern Namibia and northern Botswana, and Angola Giraffes can be found in northwestern Namibia and southern Botswana, as well," explains the study's author, Friederike Bock from the Biodiversity and Climate Research Center (BiK-F). A look at the new distribution map reveals the presence of a population of Angola Giraffes in the Central Kalahari Game Reserve, the world's second-largest national park, quasi nestled between two populations of the South African Giraffe, with both subspecies living side by side.

Subspecies were the result of early geographic separation

According to the research team, the fact that two genetically distinct subspecies could develop within the same region may be explained by the local geographic conditions that prevailed approximately 500,000 to two million years ago. Back then, the mountain range along the East African Rift Valley was sinking, creating vast wetlands and lakes, such as the paleo lake Makgadikgadi. According to Professor Dr. Axel Janke from the BiK-F, "these large bodies of water may have separated the populations for long periods of time. Moreover, female giraffes likely do not migrate across long distances, thereby contributing to a clear separation of the maternal lines." Today, there no longer exist any barriers that prevent the possible mingling of both subspecies; an investigation of these processes is however subject to further genetic analyses.

Angola and South African Giraffes can be uniquely identified by their maternal gene profile
For the study, the researchers created a profile of the subspecies' mitochondrial DNA, using tissue samples from about 160 giraffes from various populations across the entire African continent. On the basis of this genetic material, inherited from the maternal side, the often similarly marked subspecies can be uniquely identified genetically and the relationships between various populations can be clearly demonstrated. "Our focus was on giraffes in southern Africa, in particular in Botswana and South Africa. There, we sampled populations that had not been genetically analyzed before," says Bock.

New insights enable improved protection measures for the giraffe

According to estimates by the World Conservation Organization IUCN, the world's giraffe population is about 100,000 individuals -- showing a decreasing trend. In Botswana alone, the population has dwindled by more than half in recent years. In order to achieve effective protection measures that will preserve the majority of the giraffe's subspecies, it is indispensable to gain knowledge that allows their reliable identification as well as detailed information regarding their distribution. The surprising results concerning the distribution of the two subspecies in Namibia and Botswana emphasize the importance of additional taxonomic research on all giraffe subspecies.

 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. The planet wall - All Rights Reserved
Template Created by Easy Blogging Published by Mas Template
Proudly powered by Blogger