Latest Post
Showing posts with label DIET and WEIGHT LOSS. Show all posts
Showing posts with label DIET and WEIGHT LOSS. Show all posts

UA to Serve Up Fresh Approach to Health

Written By Unknown on Sunday, February 1, 2015 | 7:09 PM

The commitment of the Department of Nutritional Sciences to promoting and adapting Mediterranean diet principles will continue through all three areas of the University’s land grant mission: academic programs, research and Cooperative Extension outreach programs. Credit: UA

The Mediterranean diet has seen growing global popularity as researchers find that the dietary pattern can help prevent or reduce obesity, heart disease, type 2 diabetes and certain types of cancer.

Responsive to that popularity, the University of Arizona Department of Nutritional Sciences is hosting a series of events meant to explore and share current research related to the dietary pattern, which focuses on fresh fruits and vegetables, whole grains, beans and nuts, along with lesser amounts of lean fish, meats, dairy, olive oil and red wine.

"We want to emphasize how this pattern of eating has been demonstrated to contribute to disease prevention," said Donato Romagnolo, a professor in the Arizona Cancer Center and the nutritional sciences department, which is housed in the UA College of Agriculture and Life Sciences. 

National Geographic Blue Zones speaker Rudy Maxa, a Washington Post reporter and columnist, and five Tucson-area celebrity chefs will kick off the Jan. 28 opening-night reception, "A Food, Wine and Healthy Living Event," at the Tucson Museum of Art.

The 6-8 p.m. event is open to the public and will feature food prepared by the chefs, award-winning wine provided by the Arizona Wine Growers Association and live flamenco and Spanish guitar.

Then the UA will will host the Jan. 29-30 "Health Benefits of the Mediterranean Diet – Bringing Science to the Plate (With an Arizona Twist!)" scientific conference at the Student Union Memorial Center.

Supported in part by a grant from the U.S. Department of Agriculture, the conference is geared toward public health and nutrition professionals, nurses, physicians, physical therapists and chiropractors, and it is offered for continuing professional credit. The event is also open to students and features a student showcase.

A full agenda and registration for the conference are available online.

Promoting the health benefits of the Mediterranean lifestyle is just one of numerous initiatives sponsored by the UA Department of Nutritional Sciences to advance optimal health and well-being for Arizonans and to focus on ways of preventing and treating chronic diseases. 

After the conference, a four-part, hands-on cooking series will be offered to the public during February and March at the UA Cooperative Extension's Garden Kitchen, "The Many Faces of the Mediterranean Diet: Four Evenings," featuring the cuisines of Spain, France, Morocco and Italy. Information is available online. 

Also, the Mediterranean Diet and Health course will be offered for academic credit during summer 2015 (one week in Tucson and three weeks in Verona, Italy) for students through the UA Global Initiatives Study Abroad Program.

Much of the interest in the Mediterranean diet stems from evidence that it can reduce the risk of death associated with heart disease and cancer. Other research indicates that the diet can reduce the incidence of Parkinson's and Alzheimer's diseases.

Romagnolo, also the program director of the Mediterranean Diet and Health Study Abroad Program, said the benefits are especially important given pervasive health concerns across the nation. He noted that about 60 percent of people in the U.S. are overweight and 30 percent are obese.

"The latter is a risk factor for diabetes, cancer and metabolic syndrome," Romagnolo said.
During the conference, more than 20 presenters from the UA College of Agriculture and Life Sciences, the UA College of Medicine, national and international universities, institutes and organizations will talk. 

Presenters will cover four general areas: the Mediterranean diet and regional trends; obesity, diabetes and healthy aging; cancer prevention and control; and methods for translating science to the plate.

Live demonstrations by Arizona growers, vendors and educators will provide attendees with tasting opportunities, meal preparation ideas and information on where to find local products that help make healthful eating easy in the Southwest.

Also, prominent diet researchers from Spain, France and Greece will present current research on the health benefits of the traditional Mediterranean diet and offer ways to adapt it using local agricultural ingredients and cooking techniques. Speakers include:

Lluis Serra-Majem of the University of Las Palmas de Gran Canaria, Spain, who will present the keynote address on "The Mediterranean Diet as an Intangible and Sustainable Food Culture."

Mariette Gerber of the INSERM-Institut du Cancer de Montpellier, France, who will discuss "Implementing the Mediterranean Diet: The French Perspective." 

Antonia Trichopoulou of the University of Athens, Greece, who will speak on "Mediterranean Diet and Longevity."

"The conference is an opportunity to present ideas and concepts that may be adopted by the food industry, nutritionists, researchers and policymakers to help reduce the burden of these chronic diseases," Romagnolo said. "We want to show people how they can do it on their own and apply the basic tenets of the diet here in Arizona."

Source: University of Arizona

'Darwinian' test uncovers an antidepressant's hidden toxicity

Written By Unknown on Friday, January 16, 2015 | 10:11 PM

A University of Utah test detects hidden toxic effects by subjecting mice to competition for resources. Biology professor Wayne K. Potts and biologist Shannon M. Gaukler, who recently completed a doctoral degree at the U, stand in front of the test enclosure, illuminated in red light that mice perceive as nightfall. Credit: Andy Brimhall / University of Utah
Because of undetected toxicity problems, about a third of prescription drugs approved in the U.S. are withdrawn from the market or require added warning labels limiting their use. An exceptionally sensitive toxicity test invented at the University of Utah could make it possible to uncover more of these dangerous side effects early in pharmaceutical development so that fewer patients are given unsafe drugs.

To prove the point, the U researchers ran their test on Paxil, an antidepressant that thousands of pregnant women used in the years before it was linked to an increased risk of birth defects. The U.S. Food and Drug Administration now requires a warning about use in the first trimester of pregnancy. In the U study, mice exposed during development experienced multiple problems: males weighed less, had fewer offspring, dominated fewer territories and died at a higher rate. Females took longer to produce their first litters, had fewer pups and pups that were underweight. The drug doses were relatively close to those prescribed for people. In the conventional animal safety testing reported by the drug's manufacturer, no reproductive side effects emerged until rodents took doses multiple times higher than those given to treat depression.

"We are seeing effects at a dose that is close to human levels. And we are doing it exactly the way we need to determine if it presents a risk of harm to a developing fetus," says University of Utah biologist Shannon M. Gaukler, the study's lead author who recently completed a doctoral degree at the U. The study will be published in the January-February issue of Neurotoxicology and Teratology, which has posted a preprint online.

University of Utah biology professor Wayne K. Potts, the study's senior author, says that detecting toxicity problems early in preclinical testing would not only protect patients from exposure to unsafe drugs, but also help pharmaceutical companies avoid wasting billions of dollars bringing drugs to market only to have them fail.

"If we can find these health problems early on in preclinical testing, it has the potential of saving them a lot of money," Potts says.
Survival-of-the-fittest test

The key to the test's sensitivity is the way it uses untamed house mice -- rather than docile, inbred laboratory strains -- and subjects them to a relentless, Darwinian competition for food, shelter and mates much like they would face in the wild. Mice jostle and race for a place in a roughly 300-square-foot pen divided into six territories by wire fencing that individuals must climb to invade or flee neighboring turf. Four of the territories are prime real estate with multiple hidden nesting sites and direct access to feeders. Two territories are poor, offering only open nesting sites and indirect feeder access. The test is called the organismal performance assay, or OPA.

Potts first came up with the idea as a way to explore the impact of inbreeding. Those studies revealed harmful effects of cousin-level inbreeding that had gone unnoticed for decades of research on mouse genetics. Laboratory mice that are only slightly less healthy may not appear so when given ample food and living space. But if there is a defect in any physiological system, it is likely to stand out during intense competition.

"When they really have to compete directly, males are constantly testing each other and fighting over territories," Potts says. "If they don't win a territory, females won't consider them when it comes time to choose a mate."

In a study published last year, the performance assay revealed that doses of sugar that people regularly consume -- and deemed safe by regulators -- may in fact be toxic. When mice ate a diet of 25 percent extra sugar (the mouse equivalent of drinking three cans of soda daily) females died at twice the normal rate and males were a quarter less likely to hold territory and reproduce.

Testing Paxil

In the Paxil study, the researchers gave food laced with the antidepressant to 20 breeding pairs of mice for several weeks, until all had produced up to four litters. Doses were equivalent to about 1.8 times the level typically prescribed for people. The offspring also ate Paxil-laced chow until they reached breeding age. The researchers then released the exposed offspring into the competitive arena with the offspring of a control group of mice never exposed to Paxil. Groups consisted of eight males and 14 to 16 females, creating population densities comparable to those seen in the wild. The researchers started five such populations and kept them going for six months.

Males exposed to Paxil were about half as likely to control a territory. They also lagged behind control males in body weight throughout the weeks of competition and were more likely to die. Exposed males produced 44 percent fewer offspring. Exposed females showed no significant weight or mortality differences, but they produced half as many offspring as control females at the initial assessment. Their fecundity rebounded at later time points.

Danger signals

The test can provide an early warning of possible toxic effects, but it does not identify causal pathways. In the case of Paxil, the test might have alerted the drug's developers to the risk of birth defects when taken during pregnancy at prescribed doses, not just at the high levels used in conventional safety testing. Other selective serotonin reuptake inhibitors, or SSRIs, don't appear to pose the same level of risk as Paxil, but their safety for use during pregnancy remains unclear.

"It's unknown how Paxil causes birth defects and why Paxil has a stronger correlation with birth defects than other SSRIs," Gaukler says. "We think most of our results are driven by endocrine disruption."

Previous studies have shown that Paxil can lower the level of several reproductive hormones in female rats. In male rats, doses comparable to those prescribed for people can lower testosterone and boost estradiol. Other animal studies have shown that Paxil can lower sperm count and degrade sperm quality.

Potts says the performance assay may be even more important for identifying the toxic effects of agricultural chemicals, industrial pollutants, and other manufactured chemicals released into the environment.

"We don't really have a sensitive, broad toxicity assessment system," Potts says. "That's why these things slip through the cracks and we often don't discover harmful effects until after 10 or 20 years of epidemiology studies using the public as the experimental guinea pigs."

Scientist finds genetic wrinkle to block sun-induced skin aging

Written By Unknown on Thursday, January 15, 2015 | 10:33 PM

UBC researchers created a device to act as a tanning bed for mice. Credit: Image courtesy of University of British Columbia
A scientific team at UBC and Providence Health Care have genetically engineered mice with less wrinkled skin, despite repeated exposure to wrinkle-inducing ultraviolet (UV) light.

The findings, published last week in Aging Cell, raises hope for a drug that would block the activity of Granzyme B in certain places, and thus prevent the aging and deterioration of tissues that depend on collagen -- not just skin, but blood vessels and lung passages.

viDA Therapeutics, a company co-founded by David Granville, a professor in the Department of Pathology and Laboratory Medicine and a principal investigator in the Centre for Heart Lung Innovation of UBC and St. Paul's Hospital, is currently developing a Granzyme-B inhibitor based on technology licensed from UBC. The company plans to test a topically applied drug within two years on people with discoid lupus erythematosus, an autoimmune disease worsened by sunlight that can lead to disfiguring facial scarring. (The musician Seal has such a condition.)

If the drug proves effective in preventing lupus-related skin lesions, there is potential for a cosmetic product to prevent the normal, gradual aging of the skin, which is mostly caused by sun exposure. But the drug might also be used for life-threatening conditions, such as aneurysms and chronic obstructive pulmonary disease, caused by the breakdown of collagen and other proteins that provide structure to blood vessels and lung passages.

Background

A serendipitous discovery: Granville was investigating the role of Granzyme B in atherosclerosis and heart attacks. He and his team wanted to see if the blood vessels of mice lacking Granzyme B were more resistant to hardening and narrowing, which is a major cause of heart attacks in human. In the process, they discovered that such mice retained youthful-looking skin compared to the aged skin on normal mice.

The Canadian Institutes of Health Research (CIHR), Genome BC, and Mitacs financially support this research.

An experimental tanning bed: Granville's team constructed a device to simulate sun exposure on mice. Each mouse was put in a carousel that slowly turned under UV lamps, exposing them for three to four minutes, three times a week -- enough to cause redness, but not to burn. After 20 weeks of repetitive exposure, it became clear that the skin of mice lacking Granzyme B had aged much less -- and their collagen was more intact -- compared to the control groups.

Source: University of British Columbia

Wearable device to track diet under development

Written By Unknown on Wednesday, January 14, 2015 | 6:29 PM

A concept of the device with sensor was made through 3-D printing. Credit: The University of Alabama
Sensors and software used to track physical activity are increasingly popular, as smart phones and their apps become more powerful and sophisticated, but, when it comes to food, they all rely on the user to report meals.

Dr. Edward Sazonov, an associate professor of electrical and computer engineering at The University of Alabama, hopes to change that through development of a sensor worn around the ear that would automatically track diet, giving medical professionals and consumers accurate information that can be missed with self-reporting.

"Weight gain comes from an unbalance of the energy we take in versus the energy we expend," Sazonov said. "We can estimate diet and nutrient intake, but the primary method is self-reporting. The sensor could provide objective data, helping us better understand patterns of food intake associated with obesity and eating disorders."

Sazonov is the lead on a $1.8 million, five-year grant from the National Institute of Health to test the practical accuracy of the wearable sensor in tracking diet. Already proven viable, the device will be updated, further miniaturized and validated in a more formal, robust experiment in the community.

Called an Automatic Ingestion Monitor, or AIM, it has potential to monitor eating by automatically detecting and capturing imagery of food intake and to estimate the mass and the energy content of ingested food.

The sensor feels vibrations from movement in the jaw during food intake, and the device is programmed to filter out jaw motions, such as talking, that are not coming from drinking or eating. Estimates of energy intake would be taken from the pictures of food or drink.
More than two-thirds of adults in the United States are clinically overweight or obese, according to estimates from the Center for Disease Control and Prevention.

"Eating may be an unconscious, even automatic behavior for some individuals, and the literature is full of examples of dietary behaviors which increase the risk for overeating," Sazonov said.

In a study, the AIM will be tested against the accuracy of an alternative method, the use of a doubly-labeled water to track energy use by humans. That method measures the body's elimination rate of stable isotopes of hydrogen and oxygen added to the water, a process that can take two weeks. The information can be used to estimate how many calories a person consumes over a period of time.

However, this method is expensive and requires medical specialization, and, unlike the proposed AIM, does not track eating behavior.

The information provided by AIM could be used to improve behavioral weight loss strategies or to develop new kinds of weight-loss interventions. In addition, the AIM could also provide an objective method of assessing the effectiveness of pharmacological and behavioral interventions for eating disorders.

It's likely the technology's first application would be as a medical device, but Sazonov said it's possible it could become a consumer device that would eliminate the need for health-conscious people to keep a record of their diet.

Weigh-in once a week or you'll gain weight

Written By Unknown on Monday, January 5, 2015 | 10:41 PM

The researchers found that weight loss was related to how often individuals weighed themselves. Credit: Image courtesy of Cornell Food & Brand Lab
Stepping on the scale is common among dieters but how does the frequency of weigh-ins impact weight? A new study in PLOS ONE showed that the more frequently dieters weighed themselves the more weight they lost, and if participants went more than a week without weighing themselves, they gained weight.

The researchers analyzed 2,838 weight measurements (up to a years' worth of weigh-ins) from 40 overweight individuals (with a body mass index of 25 and over) who indicated that weight loss was a personal goal or concern. The researchers found that weight loss was related to how often individuals weighed themselves. "The more often you weigh yourself the more weight you lose," says to lead author Elina Helander from Tempere Univeristy of Technology in Finland. This observational study cannot prove causation -- it may be that less serious dieters weight themselves less or that dieters who stop losing weight stop weighting themselves. The average time that participants could go between weighting without gaining weight was 5.8 days or about a weekly weigh-in.

Previous Findings by the Research Team

Weigh yourself at least once a week if you wish to lose weight, and weighing yourself everyday may help you stay on track. A previous study by the same research team found that your weight naturally fluctuates throughout the week and that most people weigh the least on Wednesday. To summarize both studies Brian Wansink, PhD, Director of the Cornell Food and Brand Lab and author of Slim by Design: Mind Eating Solutions for Everyday Life advises, "The bottom line is: If you want to lose weight, it's best to weigh yourself every day. But if you weigh yourself only once a week, do it on Wednesday because that will give you the most accurate reading."

When you lose weight, where does the fat go? Most of the mass is breathed out as carbon dioxide, study shows

Despite a worldwide obsession with diets and fitness regimes, many health professionals cannot correctly answer the question of where body fat goes when people lose weight.
Credit: © Lovrencg / Fotolia
Despite a worldwide obsession with diets and fitness regimes, many health professionals cannot correctly answer the question of where body fat goes when people lose weight, a UNSW Australia study shows.
The most common misconception among doctors, dieticians and personal trainers is that the missing mass has been converted into energy or heat.

"There is surprising ignorance and confusion about the metabolic process of weight loss," says Professor Andrew Brown, head of the UNSW School of Biotechnology and Biomolecular Sciences.

"The correct answer is that most of the mass is breathed out as carbon dioxide. It goes into thin air," says the study's lead author, Ruben Meerman, a physicist and Australian TV science presenter.

In their paper, published in the British Medical Journal today, the authors show that losing 10 kilograms of fat requires 29 kilograms of oxygen to be inhaled and that this metabolic process produces 28 kilograms of carbon dioxide and 11 kilograms of water.

Mr Meerman became interested in the biochemistry of weight loss through personal experience.

"I lost 15 kilograms in 2013 and simply wanted to know where those kilograms were going. After a self-directed, crash course in biochemistry, I stumbled onto this amazing result," he says.

"With a worldwide obesity crisis occurring, we should all know the answer to the simple question of where the fat goes. The fact that almost nobody could answer it took me by surprise, but it was only when I showed Andrew my calculations that we both realised how poorly this topic is being taught."

The authors met when Mr Meerman interviewed Professor Brown in a story about the science of weight loss for the Catalyst science program on ABC TV in March this year.

"Ruben's novel approach to the biochemistry of weight loss was to trace every atom in the fat being lost and, as far as I am aware, his results are completely new to the field," says Professor Brown.

"He has also exposed a completely unexpected black hole in the understanding of weight loss amongst the general public and health professionals alike."

If you follow the atoms in 10 kilograms of fat as they are 'lost', 8.4 of those kilograms are exhaled as carbon dioxide through the lungs. The remaining 1.6 kilograms becomes water, which may be excreted in urine, faeces, sweat, breath, tears and other bodily fluids, the authors report.

"None of this is obvious to people because the carbon dioxide gas we exhale is invisible," says Mr Meerman.

More than 50 per cent of the 150 doctors, dieticians and personal trainers who were surveyed thought the fat was converted to energy or heat.

"This violates the Law of Conservation of Mass. We suspect this misconception is caused by the energy in/energy out mantra surrounding weight loss," says Mr Meerman.
Some respondents thought the metabolites of fat were excreted in faeces or converted to muscle.

"The misconceptions we have encountered reveal surprising unfamiliarity about basic aspects of how the human body works," the authors say.

One of the most frequently asked questions the authors have encountered is whether simply breathing more can cause weight loss. The answer is no. Breathing more than required by a person's metabolic rate leads to hyperventilation, which can result in dizziness, palpitations and loss of consciousness.

The second most frequently asked question is whether weight loss can cause global warming.

"This reveals troubling misconceptions about global warming which is caused by unlocking the ancient carbon atoms trapped underground in fossilised organisms. The carbon atoms human beings exhale are returning to the atmosphere after just a few months or years trapped in food that was made by a plant," says Mr Meerman, who also presents the science of climate change in high schools around Australia.

Mr Meerman and Professor Brown recommend that these basic concepts be included in secondary school curricula and university biochemistry courses to correct widespread misconceptions about weight loss among lay people and health professionals.

Mother's diet affects the 'silencing' of her child's genes

Written By Unknown on Thursday, December 25, 2014 | 5:25 PM

An infant from the Gambia. Credit: Felicia Webb
A mother's diet before conception can permanently affect how her child's genes function, according to a study published in Nature Communications.

The first such evidence of the effect in humans opens up the possibility that a mother's diet before pregnancy could permanently affect many aspects of her children's lifelong health.

Researchers from the MRC International Nutrition Group, based at the London School of Hygiene & Tropical Medicine and MRC Unit, The Gambia, utilized a unique 'experiment of nature' in rural Gambia, where the population's dependence on own grown foods and a markedly seasonal climate impose a large difference in people's dietary patterns between rainy and dry seasons.

Through a selection process involving over 2,000 women, the researchers enrolled pregnant women who conceived at the peak of the rainy season (84 women) and the peak of the dry season (83 women). By measuring the concentrations of nutrients in their blood, and later analysing blood and hair follicle samples from their 2-8 month old infants, they found that a mother's diet before conception had a significant effect on the properties of her child's DNA.

While a child's genes are inherited directly from their parents, how these genes are expressed is controlled through 'epigenetic' modifications to the DNA. One such modification involves tagging gene regions with chemical compounds called methyl groups and results in silencing the genes. The addition of these compounds requires key nutrients including folate, vitamins B2, B6 and B12, choline and methionine.

Experiments in animals have already shown that environmental influences before conception can lead to epigenetic changes that affect the offspring. A 2003 study found that a female mouse's diet can change her offspring's coat colour by permanently modifying DNA methylation.1 But until this latest research, funded by the Wellcome Trust and the MRC, it was unknown whether such effects also occur in humans.

Senior author Dr Branwen Hennig, Senior Investigator Scientist at the MRC Gambia Unit and the London School of Hygiene & Tropical Medicine, said: "Our results represent the first demonstration in humans that a mother's nutritional well-being at the time of conception can change how her child's genes will be interpreted, with a life-long impact."

The researchers found that infants from rainy season conceptions had consistently higher rates of methyl groups present in all six genes they studied, and that these were linked to various nutrient levels in the mother's blood. Strong associations were found with two compounds in particular (homocysteine and cysteine), and the mothers' body mass index (BMI) had an additional influence. However, although these epigenetic effects were observed, their functional consequences remain unknown.

Professor Andrew Prentice, Professor of International Nutrition at the London School of Hygiene & Tropical Medicine, and head of the Nutrition Theme at the MRC Unit, The Gambia, said: "Our on-going research is yielding strong indications that the methylation machinery can be disrupted by nutrient deficiencies and that this can lead to disease. Our ultimate goal is to define an optimal diet for mothers-to-be that would prevent defects in the methylation process. Pre-conceptional folic acid is already used to prevent defects in embryos. Now our research is pointing towards the need for a cocktail of nutrients, which could come from the diet or from supplements."

Dr Rob Waterland of Baylor College of Medicine in Houston, who conducted the epigenetic analyses said: "We selected these gene regions because our earlier studies in mice had shown that establishment of DNA methylation at metastable epialleles is particularly sensitive to maternal nutrition in early pregnancy."

The authors note that their study was limited by including only one blood sampling point during early pregnancy, but estimates of pre-conception nutrient concentrations were calculated using results from non-pregnant women sampled throughout a whole calendar year. The authors also plan to increase the sample size in further studies.

 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. The planet wall - All Rights Reserved
Template Created by Easy Blogging Published by Mas Template
Proudly powered by Blogger