Latest Post
Showing posts with label GASTROENTERITIS. Show all posts
Showing posts with label GASTROENTERITIS. Show all posts

Microbiologists discover how gut bacterial resources are hijacked to promote intestinal, foodborne illnesses

Written By Unknown on Tuesday, December 23, 2014 | 4:02 AM

Dr. Vanessa Sperandio. Credit: Image courtesy of UT Southwestern Medical Center
UT Southwestern Medical Center microbiologists have identified key bacteria in the gut whose resources are hijacked to spread harmful foodborne E. coli infections and other intestinal illnesses.

Though many E. coli bacteria are harmless and critical to gut health, some E. coli species are harmful and can be spread through contaminated food and water, causing diarrhea and other intestinal illnesses. Among them is enterohemorrhagic E. coli or EHEC, one of the most common foodborne pathogens linked with outbreaks featured in the news, including the multistate outbreaks tied to raw sprouts and ground beef in 2014.

The UT Southwestern team discovered that EHEC uses a common gut bacterium called Bacteroides thetaiotaomicron to worsen EHEC infection. B. thetaiotaomicron is a predominant species in the gut's microbiota, which consists of tens of trillions of microorganisms used to digest food, produce vitamins, and provide a barrier against harmful microorganisms.

"EHEC has learned to how to steal scarce resources that are made by other species in the microbiota for its own survival in the gut," said lead author Dr. Meredith Curtis, Postdoctoral Researcher at UT Southwestern.

The research team found that B. thetaiotaomicron causes changes in the environment that promote EHEC infection, in part by enhancing EHEC colonization, according to the paper, appearing in the journal Cell Host Microbe.

"We usually think of our microbiota as a resistance barrier for pathogen colonization, but some crafty pathogens have learned how to capitalize on this role," said Dr. Vanessa Sperandio, Professor of Microbiology and Biochemistry at UT Southwestern and senior author.

EHEC senses changes in sugar concentrations brought about by B. thetaiotaomicron and uses this information to turn on virulence genes that help the infection colonize the gut, thwart recognition and killing by the host immune system, and obtain enough nutrients to survive. The group observed a similar pattern when mice were infected with their equivalent of EHEC, the gut bacterium Citrobacter rodentium. Mice whose gut microbiota consisted solely of B. thetaiotaomicron were more susceptible to infection than those that had no gut microbiota. Once again, the research group saw that B. thetaiotaomicron caused changes in the environment that promoted C. rodentium infection.

"This study opens up the door to understand how different microbiota composition among hosts may impact the course and outcome of an infection," said Dr. Sperandio, whose lab studies how bacteria recognize the host and how this recognition might be exploited to interfere with bacterial infections. "We are testing the idea that differential gastrointestinal microbiota compositions play an important role in determining why, in an EHEC outbreak, some people only have mild diarrhea, others have bloody diarrhea and some progress to hemolytic uremic syndrome, even though all are infected with the same strain of the pathogen."

The Centers for Diseases Control and Prevention (CDC) estimates that each year roughly 1 in 6 Americans (or 48 million people) gets food poisoning; 128,000 are hospitalized;, and 3,000 die of their food-borne disease. EHEC, which also caused a widespread outbreak in Europe in 2011, can lead to bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome, which in turn can lead to kidney disease and failure. EHEC is among the top five pathogens contributing to domestically acquired foodborne illnesses resulting in hospitalization, according to the CDC. Outbreaks in 2014 were reported in California, Idaho, Massachusetts, Michigan, Missouri, Ohio, Montana, Utah, and Washington.

Study may help slow the spread of flu

Written By Unknown on Monday, December 22, 2014 | 8:09 PM

A false color image of an influenza virus particle, or “virion.” Credit: Centers for Disease Control/Cynthia Goldsmith
An important study conducted in part at the Department of Energy's SLAC National Accelerator Laboratory may lead to new, more effective vaccines and medicines by revealing detailed information about how a flu antibody binds to a wide variety of flu viruses.

The flu virus infects millions of people each year. While for most this results in an unproductive and uncomfortable week or two, the flu also contributes to many deaths in the average flu season. And while vaccines are effective in preventing the flu, they require almost yearly reformulation to keep up with the constantly changing virus.

At SSRL and APS, a team of researchers from The Scripps Research Institute, Fujita Health University and Osaka University studied both samples of flu virus components and an anti-flu antibody. The antibody, called F045-092, was already known to neutralize the flu by connecting to the region of the flu virus that binds to host cells, so it can no longer bind to its target and cause infection.

"There are patches of the virus that are more hypervariable than others," said Peter Lee, a postdoctoral research associate at The Scripps Research Institute and first author of the paper. "But the flu always binds to host cells within the same region, and so that binding site needs to be functionally conserved. That makes it a site of vulnerability."

The team used the X-ray beams at SLAC's Stanford Synchrotron Radiation Lightsource (SSRL) and Argonne National Laboratory's Advanced Photon Source (APS), both DOE Office of Science User Facilities, to view the structure of the antibody bound to one subtype of the flu virus called H3N2. They discovered that the antibody inserts a loop into the binding site of the virus, which would otherwise attach to a receptor in a host cell. Additional experimental data showed that F045-092 binds a wide variety of strains and subtypes, including all H3 avian and human viruses from 1963 to 2011 that were tested.

This understanding of the antibody's structural details and binding modes offers new insight for future structure-based drug discovery and novel avenues for designing future vaccines.
But the only way to achieve those goals is for many groups of scientists to work together, Lee said. "Our lab is very focused on the structure of the virus and antibodies, while there are lots of other labs focused on everything from small protein design to vaccine design," he said. "Hopefully we can use this structural information and join together as one big team to tackle the flu."

Source: SLAC National Accelerator Laboratory
 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. The planet wall - All Rights Reserved
Template Created by Easy Blogging Published by Mas Template
Proudly powered by Blogger