Latest Post
Showing posts with label Vitamin E. Show all posts
Showing posts with label Vitamin E. Show all posts

Antioxidant capacity of orange juice is multiplied tenfold

Written By Unknown on Tuesday, December 23, 2014 | 4:10 AM

Orange juice has greater antioxidant activity than was previously thought. Credit: SINC
The antioxidant activity of citrus juices and other foods is undervalued. A new technique developed by researchers from the University of Granada for measuring this property generates values that are ten times higher than those indicated by current analysis methods. The results suggest that tables on the antioxidant capacities of food products that dieticians and health authorities use must be revised.

Orange juice and juices from other citrus fruits are considered healthy due to their high content of antioxidants, which help to reduce harmful free radicals in our body, but a new investigation shows that their benefits are greater than previously thought.

In order to study these compounds in the laboratory, techniques that simulate the digestion of food in the digestive tract are used, which analyse only the antioxidant capacities of those substances that can potentially be absorbed in the small intestine: the liquid fraction of what we eat.

"The problem is that the antioxidant activity of the solid fraction (the fibre) isn't measured, as it's assumed that it isn't beneficial. However, this insoluble fraction arrives at the large intestine and the intestinal microbiota can also ferment it and extract even more antioxidant substances, which we can assess with our new methodology," José Ángel Rufián Henares, professor at the University of Granada, explains.

His team has developed a technique called 'global antioxidant response' (GAR), which includes an in vitro simulation of the gastrointestinal digestion that occurs in our body, whilst taking into account the 'forgotten' antioxidant capacity of the solid fraction.
The method, the details of which are published in the journal 'Food Chemistry', includes assessments of various physical and chemical parameters, such as colour, fluorescence and the relationship between the concentrations analysed and compounds indicators such as furfural.

Upon applying the technique to commercial and natural orange, mandarin, lemon and grapefruit juices, it has been proved that their values greatly increase. For example, in the case of orange juice, the value ranges from 2.3 mmol Trolox/L (units for the antioxidant capacity) registered with a traditional technique to 23 mmol Trolox/L with the new GAR method.

"The antioxidant activity is, on average, ten times higher than that which everyone thought up until now, and not just in juices, but also in any other kind of food analysed with this methodology," highlights Rufián Henares, who notes its possible application: "This technique and the results derived from it could allow dieticians and health authorities to better establish the values of the antioxidant capacity of foods."

With the help of this method, scientists have also created a mathematical model in order to classify juices according to their natural and storage conditions, which ensures that the correct raw materials and sterilisation and pasteurisation processes are used.

PHS gene prevents wheat from sprouting: Fewer crop losses anticipated

Written By Unknown on Monday, December 22, 2014 | 11:59 PM

Preharvest sprouting can cause significant losses in wheat crops, particularly in white wheat crops. Credit: Kansas State University Photo Services
A new study about the common problem of preharvest sprouting, or PHS, in wheat is nipping the crop-killing issue in the bud.

Researchers at Kansas State University and the U.S. Department of Agriculture-Agricultural Research Service, or USDA-ARS, found and cloned a gene in wheat named PHS that prevents the plant from preharvest sprouting. Preharvest sprouting happens when significant rain causes the wheat grain to germinate before harvest and results in significant crop losses.

"This is great news because preharvest sprouting is a very difficult trait for wheat breeders to handle through breeding alone," said Bikram Gill, university distinguished professor of plant pathology and director of the Wheat Genetics Resource Center. "With this study, they will have a gene marker to expedite the breeding of wheat that will not have this problem."

Gill conducted the study with Guihau Bai, a researcher with the Hard Winter Wheat Genetics Research Unit of the USDA-ARS, adjunct professor of agronomy at Kansas State University and the study's lead author. Also involved were Harold Trick, professor of plant pathology; Shubing Liu, research associate in agronomy; Sunish Sehgal, senior scientist in plant pathology; Jiarui Li, research assistant professor; and Meng Lin, doctoral student in agronomy, all from Kansas State University; and Jianming Yu, Iowa State University.

Their study, "Cloning and Characterization of a Critical Regulator for Pre-Harvest Sprouting in Wheat," appears in a recent issue of the scientific journal Genetics.

The finding will to be most beneficial to white wheat production, which loses $1 billion annually to preharvest sprouting, according to Gill.

He said consumers prefer white wheat to the predominant red wheat because white wheat lacks the more bitter flavor associated with red wheat. Millers also prefer white wheat to red because it produces more flour when ground. The problem is that white wheat is very susceptible to preharvest sprouting.

"There has been demand for white wheat in Kansas for more than 30 years," Gill said. "The very first year white wheat was grown in the state, though, there was rain in June and then there was preharvest sprouting and a significant loss. The white wheat industry has not recovered since and has been hesitant to try again. I think that this gene is a big step toward establishing a white wheat industry in Kansas."

Gill said identifying the PHS gene creates a greater assurance before planting a crop that it will be resistant to preharvest sprouting once it grows a year later. Wheat breeders can now bring a small tissue sample of a wheat plant into a lab and test whether it has the preharvest sprouting resistance gene rather than finding out once the crop grows.

Much of the work to isolate the PHS gene came from Gill and his colleagues' efforts to fully sequence the genome -- think genetic blueprint -- of common wheat. Wheat is the only major food plant not to have its genome sequenced. The genome of wheat is nearly three times the size of the human genome.

Researchers were able to study sequenced segments of the common wheat genome and look for a naturally occurring resistance gene. Gill said without the sequenced segments, finding the PHS gene would have been impossible.

Source: Kansas State University
 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. The planet wall - All Rights Reserved
Template Created by Easy Blogging Published by Mas Template
Proudly powered by Blogger