Latest Post
Showing posts with label BRAIN INJURY. Show all posts
Showing posts with label BRAIN INJURY. Show all posts

Gut microbiota influences blood-brain barrier permeability

Written By Unknown on Sunday, January 18, 2015 | 9:27 AM

Uptake of the substance Raclopride in the brain of germ-free versus conventional mice.
Credit: Miklos Toth
A new study in mice, conducted by researchers at Sweden's Karolinska Institutet together with colleagues in Singapore and the United States, shows that our natural gut-residing microbes can influence the integrity of the blood-brain barrier, which protects the brain from harmful substances in the blood. According to the authors, the findings provide experimental evidence that our indigenous microbes contribute to the mechanism that closes the blood-brain barrier before birth. The results also support previous observations that gut microbiota can impact brain development and function.

The blood-brain barrier is a highly selective barrier that prevents unwanted molecules and cells from entering the brain from the bloodstream. In the current study, being published in the journal Science Translational Medicine, the international interdisciplinary research team demonstrates that the transport of molecules across the blood-brain barrier can be modulated by gut microbes -- which therefore play an important role in the protection of the brain.

The investigators reached this conclusion by comparing the integrity and development of the blood-brain barrier between two groups of mice: the first group was raised in an environment where they were exposed to normal bacteria, and the second (called germ-free mice) was kept in a sterile environment without any bacteria.

"We showed that the presence of the maternal gut microbiota during late pregnancy blocked the passage of labeled antibodies from the circulation into the brain parenchyma of the growing fetus," says first author Dr. Viorica Braniste at the Department of Microbiology, Tumor and Cell Biology at Karolinska Institutet. "In contrast, in age-matched fetuses from germ-free mothers, these labeled antibodies easily crossed the blood-brain barrier and was detected within the brain parenchyma."

The team also showed that the increased 'leakiness' of the blood-brain barrier, observed in germ-free mice from early life, was maintained into adulthood. Interestingly, this 'leakiness' could be abrogated if the mice were exposed to fecal transplantation of normal gut microbes. 

The precise molecular mechanisms remain to be identified. However, the team was able to show that so-called tight junction proteins, which are known to be important for the blood-brain barrier permeability, did undergo structural changes and had altered levels of expression in the absence of bacteria.

According to the researchers, the findings provide experimental evidence that alterations of our indigenous microbiota may have far-reaching consequences for the blood-brain barrier function throughout life.

"These findings further underscore the importance of the maternal microbes during early life and that our bacteria are an integrated component of our body physiology," says Professor Sven Pettersson, the principal investigator at the Department of Microbiology, Tumor and Cell Biology. "Given that the microbiome composition and diversity change over time, it is tempting to speculate that the blood-brain barrier integrity also may fluctuate depending on the microbiome. This knowledge may be used to develop new ways for opening the blood-brain-barrier to increase the efficacy of the brain cancer drugs and for the design of treatment regimes that strengthens the integrity of the blood-brain barrier."

Gene discovered that reduces risk of stroke

Lab microscope (stock image). The discovery of a gene that protects people against one of the major causes of stroke could lead to new treatments and prevention strategies for the disease.
Credit: © 18percentgrey / Fotolia
Scientists have discovered a gene that protects people against one of the major causes of stroke in young and middle-aged adults and could hold the key to new treatments.

Researchers from Royal Holloway, University of London, together with an international team from across the United States and Europe, have found that people with a specific variant of a gene, known as PHACTR1, are at reduced risk of suffering cervical artery dissection, which is caused by a tear in an artery that leads to the brain.

The new discovery, published in the journal Nature Genetics, could lead to new treatments and prevention strategies for the disease, which is a major cause of stroke in young adults. The same gene variant has also been identified as a protector against migraines and affects the risk of heart attack.

Professor Pankaj Sharma, from the School of Biological Sciences at Royal Holloway, said: "This is an important breakthrough. Our findings provide us with a greater understanding of how this region of the genome appears to influence key vascular functions, which could have major implications for the treatment of these severe and disabling conditions. "

In the largest study of its kind ever undertaken, researchers from around the world screened the entire genome of 1,400 patients with cervical artery dissection, along with 14,400 people without the disease. Cervical artery dissection can lead to compression of adjacent nerves and to blood clotting, potentially causing blockage of vessels and brain damage.

Professor Sharma, Professor of Clinical Neurology at Royal Holloway, added: "Further genetic analyses and worldwide collaborations of this kind provide hope of pinpointing the underlying mechanisms that cause stroke. The Bio-Repository of DNA in Stroke (BRAINS) study I am leading is creating a large stroke DNA biobank which will give an exciting opportunity to identify the genes directly linked to the condition."

Neck manipulation may be associated with stroke

Written By Unknown on Friday, January 16, 2015 | 8:13 PM

Vertebral artery as it passes through the neck vertebrae of the spine and enters the skull base. Arrows indicate head movement during lateral rotation and lateral flexion, motions that may be performed as part of a neck manipulation. Credit: © 2013 Trial FX.
Manipulating the neck has been associated with cervical dissection, a type of arterial tear that can lead to stroke. Although a direct cause-and-effect link has not been established between neck manipulation and the risk of stroke, healthcare providers should inform patients of the association before they undergo neck manipulation.

Treatments involving neck manipulation may be associated with stroke, though it cannot be said with certainty that neck manipulation causes strokes, according to a new scientific statement published in the American Heart Association's journal Stroke.

Cervical artery dissection (CD) is a small tear in the layers of artery walls in the neck. It can result in ischemic stroke if a blood clot forms after a trivial or major trauma in the neck and later causes blockage of a blood vessel in the brain. Cervical artery dissection is an important cause of stroke in young and middle-aged adults.

"Most dissections involve some trauma, stretch or mechanical stress," said José Biller, M.D., lead statement author and professor and chair of neurology at the Loyola University Chicago Stritch School of Medicine. "Sudden movements that can hyperextend or rotate the neck -- such as whiplash, certain sports movements, or even violent coughing or vomiting -- can result in CD, even if they are deemed inconsequential by the patient."

Although techniques for cervical manipulative therapy vary, some maneuvers used as therapy by health practitioners also extend and rotate the neck and sometimes involve a forceful thrust.

There are four arteries that supply blood to the brain: the two carotid arteries on each side of the neck, and the two vertebral arteries on the back of the neck. The influence of neck manipulation seems more important in vertebral artery dissection than in internal carotid artery dissection.

"Although a cause-and-effect relationship between these therapies and CD has not been established and the risk is probably low, CD can result in serious neurological injury," Biller said. "Patients should be informed of this association before undergoing neck manipulation."

The association between cervical artery dissection and cervical manipulative therapies was identified in case control studies, which aren't designed to prove cause and effect. An association means that there appears to be a relationship between two things, i.e., manipulative therapy of the neck and a greater incidence of cervical dissection/stroke. 
However, it's not clear whether other factors could account for the apparent relationship.

The relationship between neck manipulation and cervical artery dissection is difficult to evaluate because patients who already are beginning to have a cervical artery dissection may seek treatment to relieve neck pain, a common symptom of cervical artery dissection that can precede symptoms of stroke by several days.

You should seek emergency medical evaluation if you develop neurological symptoms after neck manipulation or trauma, such as:
  • Pain in the back of your neck or in your head;
  • Dizziness/vertigo;
  • Double vision;
  • Unsteadiness when walking;
  • Slurred speech;
  • Nausea and vomiting;
  • Jerky eye movements.
"Tell the physician if you have recently had a neck trauma or neck manipulation," Biller said. 
"Some symptoms, such as dizziness or vertigo, are very common and can be due to minor conditions rather than stroke, but giving the information about recent neck manipulation can raise a red flag that you may have a CD rather than a less serious problem, particularly in the presence of neck pain."

New way to diagnose brain damage from concussions, strokes, and dementia

Written By Unknown on Thursday, January 15, 2015 | 10:56 PM

A new tool to assess cerebrovascular health: Coherent Hemodynamics Spectroscopy (CHS).
Credit: Tufts University Professor of Biomedical Engineering Sergio Fantini
New optical diagnostic technology developed at Tufts University School of Engineering promises new ways to identify and monitor brain damage resulting from traumatic injury, stroke or vascular dementia -- in real time and without invasive procedures.

Coherent hemodynamics spectroscopy (CHS), developed and published by Tufts Professor of Biomedical Engineering Sergio Fantini, measures blood flow, blood volume, and oxygen consumption in the brain. It uses non-invasive near infrared (NIR) light technology to scan brain tissue, and then applies mathematical algorithms to interpret that information.

"CHS is based on measurements of brain hemodynamics that are interpreted according to unique algorithms that generate measures of cerebral blood flow, blood volume and oxygen consumption," says Fantini. "This technique can be used not only to assess brain diseases but also to study the blood flow and how it is regulated in the healthy brain."

Tufts has licensed CHS on a non-exclusive basis to ISS, a Champaign, Ill.-based company that specializes in technology to measure hemoglobin concentration and oxygenation in brain and muscle tissue.

"Potentially the market for CHS is large as it encompasses several applications from the monitoring of cerebrovascular disorders to assessing neurological disorders," says Beniamino Barbieri, president of ISS. "It reminds me of the introduction of ultrasound technology at beginning of the seventies; nobody back then knew how to utilize the new technology and of course, nowadays, its applications are ubiquitous in any medical center."

How It Works

CHS uses laser diodes which emit NIR light that is delivered to the scalp by fiber optics. Light waves are absorbed by the blood vessels in the brain. Remaining light is reflected back to sensors, resulting in optical signals that oscillate with time as a result of the heartbeat, respiration, or other sources of variations in the blood pressure.

By analyzing the light signals with algorithms developed for this purpose, Fantini's model is able to evaluate blood flow and the way the brain regulates it--which is one marker for brain health.

CHS technology has been tested among patients undergoing hemodialysis at Tufts Medical Center. Published research reported a lower cerebral blood flow in dialysis patients compared with healthy patients.

"Non-invasive ways to measure local changes in cerebral blood flow, particularly during periods of stress such as hemodialysis, surgeries, and in the setting of stroke, could have major implications for maintaining healthy brain function," says Daniel Weiner, M.D., a nephrologist at Tufts Medical Center (Tufts MC) and associate professor of medicine at Tufts University School of Medicine (TUSM), who is a member of the research team.

Josh Kornbluth, M.D., a neurologist at Tufts MC and associate professor of medicine at TUSM, is also working with Fantini to explore CHS's potential to assess the cerebrovascular state of patients who suffer traumatic brain injury or stroke. They hope to test CHS further among neurological critical care patients.

"Having data about local cerebral blood flow and whether it is properly regulated can allow us to more accurately develop individualized therapy and interventions instead of choosing a 'one size fits all' approach to traumatic brain injury, stroke, or subarachnoid hemorrhage," Kornbluth says.

WHACK! Study measures head blows in girls' lacrosse

Written By Unknown on Wednesday, January 14, 2015 | 6:37 PM

Trey Crisco invited lacrosse-playing girls to the lab to measure the impact of their blows as they whacked the head of a laboratory dummy — and to evaluate the performance of protective headgear. Credit: Mike Cohea/Brown University
Lacrosse players swing hard, which is why errant stick blows are the leading cause of concussion in girls' and women's lacrosse. In a new study, researchers measured how much the worst blows accelerate the head and how much different kinds of headgear could reduce those accelerations.

Girls' and women's lacrosse is a different game from the version played by males, said Joseph Crisco, the Henry Frederick Lippitt Professor of Orthopaedic Research in the Alpert Medical School of Brown University and a researcher at Rhode Island Hospital. Females wear far less protective equipment than males do, and injuries -- especially severe head injuries -- are comparatively rare. But recently the debate about whether female players should wear headgear has gained prominence.

Coming to blows

The girls delivered peak performance averaging 60 times the acceleration of Earth's gravity (60g) when they struck the headforms with their lacrosse sticks.

"The goal of our study was to answer the question of what types of head accelerations would you see if you were hit in the head with a stick," said Crisco, who used to coach his daughters in girls lacrosse and also sits on the Sports Science and Safety Committee of US Lacrosse, the national governing body of lacrosse.

To conduct the study, published online in the Journal of Applied Biomechanics, Crisco's team asked seven female lacrosse players aged 12 to 14 to deliver at least 36 whacks each, as hard as they possibly could, to various places on two dummy headforms in the lab.

"The kinds of hits recorded were basically aggressive street fights," Crisco said. "They were really whacking at it, every shaft was broken by the end of the study, which would never happen in a game. The goal was just to give US Lacrosse and the manufacturers some baseline information on the types of accelerations they could expect to see in a worst-case scenario."

They used six different sticks, each outfitted with motion capture markers. The headforms had embedded accelerometers. In a second set of experiments the headforms donned one of four different kinds of protective headgear.

On average across 508 successful blows in the first experiment, the girls swung their sticks about 18 miles an hour, enough to complete two revolutions in less than a second. (One of Crisco's prior studies showed, perhaps not surprisingly, that high school and college players swung their sticks even faster). The peak acceleration the girls delivered to the headforms when they struck them with the shafts of their sticks averaged 60 times the acceleration of Earth's gravity (60g).

That's about three times more force than, say, football players with the kind of celebratory head butt that teammates exchange after a big play, Crisco said.

Headgear dampens blows

The second set of experiments examined what effect headgear might have on the girls' harder whacks (those with speeds around 23 miles an hour). Crisco's team measured the accelerations delivered by 20 whacks from the shaft of each volunteer's stick on both the back and the side of each headform. The headforms wore either nothing, a hard-sided men's lacrosse helmet, a rugby scrum cap, mixed martial arts headgear, or soft headgear designed for girls' and women's field hockey and lacrosse.

The average peak accelerations measured on bare headgear were 81.6g for blows to the side and 150.7g for blows to the back. The men's lacrosse helmet brought the average peak acceleration all the way down to 28.2g on the side and 23.1g on the back. The martial arts and girls lacrosse/field hockey headgear each reduced the accelerations significantly as well, but not nearly as much as the men's helmet. The rugby cap failed to reduce acceleration for blows to the side but dampened blows to the back a little better than the martial arts or lacrosse/field hockey gear.

Headgear, therefore, significantly reduced head accelerations. But Crisco cautioned against a run on headgear at the sporting goods store based on the study.

Generally research has shown that helmets do not protect against concussion -- only against skull fractures and traumatic brain injury. Indeed very little data connects accelerations to concussion risk, and individual susceptibility varies widely. Though some research hints at a figure around 100g, only the hard-sided men's helmet brought accelerations for blows to the back significantly below that figure. And in many game situations, given how little other protective equipment female players wear, Crisco said, a hard-sided helmet could easily cause more injuries that it prevents.

"It could actually make the game more aggressive," Crisco said.

Football players found to have brain damage from mild 'unreported' concussions

The images from the Ben-Gurion University of the Negev JAMA Neurology study represent Blood-Brain Barrier (BBB) Permeability in Football Players (A) vs. a control group (B). The players in the pathological-BBB group (B) presented focal BBB lesions in different cortical regions including the temporal (player 4), frontal (player 5), and parietal (player 6) lobes. Both gray and white matter were involved. Credit: Image courtesy of American Associates, Ben-Gurion University of the Negev
A new, enhanced MRI diagnostic approach was, for the first time, able to identify significant damage to the blood-brain barrier (BBB) of professional football players following "unreported" trauma or mild concussions. Published in the current issue of JAMA Neurology, this study could improve decision making on when an athlete should "return to play."

According to Prof. Alon Friedman, from the Ben-Gurion University Brain Imaging Research Center and discoverer of the new diagnostic, "until now, there wasn't a diagnostic capability to identify mild brain injury early after the trauma. In the NFL, other professional sports and especially school sports, concern has grown about the long-term neuropsychiatric consequences of repeated mild Traumatic Brain Injury (mTBI) and specifically sports-related concussive and sub-concussive head impacts."

The paper, published by researchers at Ben-Gurion University of the Negev (BGU) and Soroka University Medical Center, describes a new diagnostic approach using Magnetic Resonance Imaging (MRI) for detection and localization of vascular pathology and blood-brain barrier breakdown in football players.

The images from the Ben-Gurion University of the Negev JAMA Neurology study represent Blood-Brain Barrier (BBB) Permeability in Football Players (A) vs. a control group (B). The players in the pathological-BBB group (B) presented focal BBB lesions in different cortical regions including the temporal (player 4), frontal (player 5), and parietal (player 6) lobes. Both gray and white matter were involved.

"The goal of our study was to use our new method to visualize the extent and location of BBB dysfunction in football players using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) on a Phillips 3-T Ingenia. Specifically, it generates more detailed brain maps showing brain regions with abnormal vasculature, or a 'leaky BBB.' "

Study participants included 16 football players from Israel's professional football team, Black Swarm, as well as 13 track and field athletes from Ben-Gurion University who served as controls. All underwent the newly developed MRI-based diagnostic.

The DCE-MRIs were given between games during the season and revealed significant damage.

Forty percent of the examined football players with unreported concussions had evidence of "leaky BBB" compared to 8.3 percent of the control athletes.

"The group of 29 volunteers was clearly differentiated into an intact-BBB group and a pathological-BBB group," Friedman explains. "This showed a clear association between football and increased risk for BBB pathology that we couldn't see before. In addition, high-BBB permeability was found in six players and in only one athlete from the control group."

Friedman also explains that not all the players showed pathology. This indicates that repeated, mild concussive events might impact some players differently than others. This level of diagnosis of individual players can provide the basis of more rational decision making on "return to play" for professionals as well amateurs of any age.

"Generally, players return to the game long before the brain's physical healing is complete, which could exacerbate the possibility of brain damage later in life," says Friedman.

A decade of research in the BGU Laboratory for Experimental Neurosurgery has shown that vascular pathology, and specifically dysfunction of the blood-brain barrier (BBB), plays a key role in brain dysfunction and degeneration, and may be an underlying cause of neurodegenerative complications after brain injuries.

The BBB is a highly selective permeable membrane that separates circulating blood from extracellular fluid. It protects the brain by preventing many dangerous substances from penetrating, and therefore is not meant to be damaged.

Medical researchers, including Friedman's group at BGU, are working to find ways to find drugs that will target the BBB and facilitate its repair, allowing for the prevention of Alzheimer's disease and other brain-related disease.

"Prof. Friedman has been able to conduct this breakthrough brain research using the state-of-the-art MRI machine donated as a result of contributions from American Associates, Ben-Gurion University of the Negev (AABGU)," explains Doron Krakow, AABGU executive vice president. "We believe that with continued support, Prof. Friedman and the DCE-MRI can help render more accurate and informed decisions by athletes and others exposed to mild concussions about when to resume activities."

Source: American Associates, Ben-Gurion University of the Negev

How does the brain react to virtual reality? Completely different pattern of activity in brain

Written By Unknown on Thursday, January 8, 2015 | 3:27 AM

Illusions (stock image). UCLA neurophysicists have found that space-mapping neurons in the brain react differently to virtual reality than they do to real-world environments. Credit: © agsandrew / Fotolia
UCLA neurophysicists have found that space-mapping neurons in the brain react differently to virtual reality than they do to real-world environments. Their findings could be significant for people who use virtual reality for gaming, military, commercial, scientific or other purposes.

"The pattern of activity in a brain region involved in spatial learning in the virtual world is completely different than when it processes activity in the real world," said Mayank Mehta, a UCLA professor of physics, neurology and neurobiology in the UCLA College and the study's senior author. "Since so many people are using virtual reality, it is important to understand why there are such big differences."

The study was published today in the journal Nature Neuroscience.

The scientists were studying the hippocampus, a region of the brain involved in diseases such as Alzheimer's, stroke, depression, schizophrenia, epilepsy and post-traumatic stress disorder. The hippocampus also plays an important role in forming new memories and creating mental maps of space. For example, when a person explores a room, hippocampal neurons become selectively active, providing a "cognitive map" of the environment.

The mechanisms by which the brain makes those cognitive maps remains a mystery, but neuroscientists have surmised that the hippocampus computes distances between the subject and surrounding landmarks, such as buildings and mountains. But in a real maze, other cues, such as smells and sounds, can also help the brain determine spaces and distances.

To test whether the hippocampus could actually form spatial maps using only visual landmarks, Mehta's team devised a noninvasive virtual reality environment and studied how the hippocampal neurons in the brains of rats reacted in the virtual world without the ability to use smells and sounds as cues.

Researchers placed a small harness around rats and put them on a treadmill surrounded by a "virtual world" on large video screens -- a virtual environment they describe as even more immersive than IMAX -- in an otherwise dark, quiet room. The scientists measured the rats' behavior and the activity of hundreds of neurons in their hippocampi, said UCLA graduate student Lavanya Acharya, a lead author on the research.

The researchers also measured the rats' behavior and neural activity when they walked in a real room designed to look exactly like the virtual reality room.

The scientists were surprised to find that the results from the virtual and real environments were entirely different. In the virtual world, the rats' hippocampal neurons seemed to fire completely randomly, as if the neurons had no idea where the rat was -- even though the rats seemed to behave perfectly normally in the real and virtual worlds.

"The 'map' disappeared completely," said Mehta, director of a W.M. Keck Foundation Neurophysics center and a member of UCLA's Brain Research Institute. "Nobody expected this. The neuron activity was a random function of the rat's position in the virtual world."

Explained Zahra Aghajan, a UCLA graduate student and another of the study's lead authors: 

"In fact, careful mathematical analysis showed that neurons in the virtual world were calculating the amount of distance the rat had walked, regardless of where he was in the virtual space."

They also were shocked to find that although the rats' hippocampal neurons were highly active in the real-world environment, more than half of those neurons shut down in the virtual space.

The virtual world used in the study was very similar to virtual reality environments used by humans, and neurons in a rat's brain would be very hard to distinguish from neurons in the human brain, Mehta said.

His conclusion: "The neural pattern in virtual reality is substantially different from the activity pattern in the real world. We need to fully understand how virtual reality affects the brain."

Neurons Bach would appreciate

In addition to analyzing the activity of individual neurons, Mehta's team studied larger groups of the brain cells. Previous research, including studies by his group, have revealed that groups of neurons create a complex pattern using brain rhythms.

"These complex rhythms are crucial for learning and memory, but we can't hear or feel these rhythms in our brain. They are hidden under the hood from us," Mehta said. "The complex pattern they make defies human imagination. The neurons in this memory-making region talk to each other using two entirely different languages at the same time. One of those languages is based on rhythm; the other is based on intensity."

Every neuron in the hippocampus speaks the two languages simultaneously, Mehta said, comparing the phenomenon to the multiple concurrent melodies of a Bach fugue.

Mehta's group reports that in the virtual world, the language based on rhythm has a similar structure to that in the real world, even though it says something entirely different in the two worlds. The language based on intensity, however, is entirely disrupted.

When people walk or try to remember something, the activity in the hippocampus becomes very rhythmic and these complex, rhythmic patterns appear, Mehta said. Those rhythms facilitate the formation of memories and our ability to recall them. Mehta hypothesizes that in some people with learning and memory disorders, these rhythms are impaired.

"Neurons involved in memory interact with other parts of the hippocampus like an orchestra," Mehta said. "It's not enough for every violinist and every trumpet player to play their music flawlessly. They also have to be perfectly synchronized."

Mehta believes that by retuning and synchronizing these rhythms, doctors will be able to repair damaged memory, but said doing so remains a huge challenge.

"The need to repair memories is enormous," noted Mehta, who said neurons and synapses -- the connections between neurons -- are amazingly complex machines.

Previous research by Mehta showed that the hippocampal circuit rapidly evolves with learning and that brain rhythms are crucial for this process. Mehta conducts his research with rats because analyzing complex brain circuits and neural activity with high precision currently is not possible in humans.

Other co-authors of the study were Jason Moore, a UCLA graduate student; Cliff Vuong, a research assistant who conducted the research as a UCLA undergraduate; and UCLA postdoctoral scholar Jesse Cushman. The research was funded by the W.M. Keck Foundation and the National Institutes of Health.

Source: University of California - Los Angeles

In search of the origin of our brain

Written By Unknown on Thursday, December 25, 2014 | 3:43 AM

Nervous system in Nematostella vectensis embryos with different nerve cell populations, where the different neurons (here in green, blue and magenta) evidence asymmetry. Credit: Hiroshi Watanabe, Thomas Holstein / Nature Communication 5:5536, Macmillan Publishers Limited
While searching for the origin of our brain, biologists at Heidelberg University have gained new insights into the evolution of the central nervous system (CNS) and its highly developed biological structures. The researchers analysed neurogenesis at the molecular level in the model organism Nematostella vectensis. Using certain genes and signal factors, the team led by Prof. Dr. Thomas Holstein of the Centre for Organismal Studies demonstrated how the origin of nerve cell centralization can be traced back to the diffuse nerve net of simple and original lower animals like the sea anemone. The results of their research will be published in the journal "Nature Communications."

Like corals and jellyfish, the sea anemone -- Nematostella vectensis -- is a member of the Cnidaria family, which is over 700 million years old. It has a simple sack-like body, with no skeleton and just one body orifice. The nervous system of this original multicellular animal is organised in an elementary nerve net that is already capable of simple behaviour patterns. Researchers previously assumed that this net did not evidence centralization, that is, no local concentration of nerve cells. In the course of their research, however, the scientists discovered that the nerve net of the embryonic sea anemone is formed by a set of neuronal genes and signal factors that are also found in vertebrates.

According to Prof. Holstein, the origin of the first nerve cells depends on the Wnt signal pathway, named for its signal protein, Wnt. It plays a pivotal role in the orderly evolution of different types of animal cells. The Heidelberg researchers also uncovered an initial indication that another signal path is active in the neurogenesis of sea anemones -- the BMP pathway, which is instrumental for the centralization of nerve cells in vertebrates.

Named after the BMP signal protein, this pathway controls the evolution of various cell types depending on the protein concentration, similar to the Wnt pathway, but in a different direction. The BMP pathway runs at a right angle to the Wnt pathway, thereby creating an asymmetrical pattern of neuronal cell types in the widely diffuse neuronal net of the sea anemone. "This can be considered as the birth of centralization of the neuronal network on the path to the complex brains of vertebrates," underscores Prof. Holstein.

While the Wnt signal path triggers the formation of the primary body axis of all animals, from sponges to vertebrates, the BMP signal pathway is also involved in the formation of the secondary body axis (back and abdomen) in advanced vertebrates. "Our research results indicate that the origin of a central nervous system is closely linked to the evolution of the body axes," explains Prof. Holstein.

A clear, molecular view of how human color vision evolved

Written By Unknown on Tuesday, December 23, 2014 | 8:48 PM

Mountain Gorilla - Bwindi Uganda. “Gorillas and chimpanzees have human color vision,” Yokoyama says. “Or perhaps we should say that humans have gorilla and chimpanzee vision.” Credit: © Alexander / Fotolia
Many genetic mutations in visual pigments, spread over millions of years, were required for humans to evolve from a primitive mammal with a dim, shadowy view of the world into a greater ape able to see all the colors in a rainbow.

Now, after more than two decades of painstaking research, scientists have finished a detailed and complete picture of the evolution of human color vision. PLOS Genetics published the final pieces of this picture: The process for how humans switched from ultraviolet (UV) vision to violet vision, or the ability to see blue light.

"We have now traced all of the evolutionary pathways, going back 90 million years, that led to human color vision," says lead author Shozo Yokoyama, a biologist at Emory University. 

"We've clarified these molecular pathways at the chemical level, the genetic level and the functional level."

Co-authors of the PLOS Genetics paper include Emory biologists Jinyi Xing, Yang Liu and Davide Faggionato; Syracuse University biologist William Starmer; and Ahmet Altun, a chemist and former post-doc at Emory who is now at Fatih University in Istanbul, Turkey.

Yokoyama and various collaborators over the years have teased out secrets of the adaptive evolution of vision in humans and other vertebrates by studying ancestral molecules. The lengthy process involves first estimating and synthesizing ancestral proteins and pigments of a species, then conducting experiments on them. The technique combines microbiology with theoretical computation, biophysics, quantum chemistry and genetic engineering.

Five classes of opsin genes encode visual pigments for dim-light and color vision. Bits and pieces of the opsin genes change and vision adapts as the environment of a species changes.

Around 90 million years ago, our primitive mammalian ancestors were nocturnal and had UV-sensitive and red-sensitive color, giving them a bi-chromatic view of the world. By around 30 million years ago, our ancestors had evolved four classes of opsin genes, giving them the ability to see the full-color spectrum of visible light, except for UV.

"Gorillas and chimpanzees have human color vision," Yokoyama says. "Or perhaps we should say that humans have gorilla and chimpanzee vision."

For the PLOS Genetics paper, the researchers focused on the seven genetic mutations involved in losing UV vision and achieving the current function of a blue-sensitive pigment. 

They traced this progression from 90-to-30 million years ago.

The researchers identified 5,040 possible pathways for the amino acid changes required to bring about the genetic changes. "We did experiments for every one of these 5,040 possibilities," Yokoyama says. "We found that of the seven genetic changes required, each of them individually has no effect. It is only when several of the changes combine in a particular order that the evolutionary pathway can be completed."

In other words, just as an animal's external environment drives natural selection, so do changes in the animal's molecular environment.

In previous research, Yokoyama showed how the scabbardfish, which today spends much of its life at depths of 25 to 100 meters, needed just one genetic mutation to switch from UV to blue-light vision. Human ancestors, however, needed seven changes and these changes were spread over millions of years. "The evolution for our ancestors' vision was very slow, compared to this fish, probably because their environment changed much more slowly," 
Yokoyama says.

About 80 percent of the 5,040 pathways the researchers traced stopped in the middle, because a protein became non-functional. Chemist Ahmet Altun solved the mystery of why the protein got knocked out. It needs water to function, and if one mutation occurs before the other, it blocks the two water channels extending through the vision pigment's membrane.

"The remaining 20 percent of the pathways remained possible pathways, but our ancestors used only one," Yokoyama says. "We identified that path."

In 1990, Yokoyama identified the three specific amino acid changes that led to human ancestors developing a green-sensitive pigment. In 2008, he led an effort to construct the most extensive evolutionary tree for dim-light vision, including animals from eels to humans. At key branches of the tree, Yokoyama's lab engineered ancestral gene functions, in order to connect changes in the living environment to the molecular changes.

The PLOS Genetics paper completes the project for the evolution of human color vision. "We have no more ambiguities, down to the level of the expression of amino acids, for the mechanisms involved in this evolutionary pathway," Yokoyama says.

Source: Emory Health Sciences
 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. The planet wall - All Rights Reserved
Template Created by Easy Blogging Published by Mas Template
Proudly powered by Blogger