Latest Post
Showing posts with label HYBRID VEHICLE. Show all posts
Showing posts with label HYBRID VEHICLE. Show all posts

Japan tests new satellite on robotic tractors in Riverina

Written By Unknown on Wednesday, January 28, 2015 | 11:32 PM

PHOTO: A drone hovers over the Japanese robotic tractor trialled at Rice Research Australia in south-west NSW. (Laurissa Smith)
How would you feel about leaving a tractor to drive itself in one paddock, while you work in another ?

To the busy farmer, struggling to find local labour, it's an appealing concept.

Around the world, manufacturers, engineers and researchers are now trying to turn that into a reality.

In Japan, they've designed a self-steering robotic tractor which can sow, plough and spray crops.

An advanced positioning signal is transmitted from Japan's Quasi-Zenith Satellite System to control the tractor's movements.

The Japanese Government is funding trials to test the tractor on crops at Rice Research Australia near Jerilderie in south-west New South Wales.

Engineering firm Hitachi Zosen, machine manufacturer Yanmar, Hokkaido University and several other Australian universities are working together on the project.

Phil Collier, research director with Australia's Co-operative Research Centre for Spatial Information, hopes the technology can help farmers run their equipment with more accuracy.

"The satellites in the sky determine the position of the tractor in a global frame of reference," he said.

"The additional information that comes from the QZSS Satellites brings the precision down from several metres to two centimetres.

"The whole objective is to bring down the precision to a reliable level and a consistent level to allow that tractor to navigate its way down the rows of crops so things aren't getting run over."

If the trials prove successful, people in rural and remote Australia will have access to precise positioning, without having to rely on the mobile network.

At the moment, the robotic tractor is being tested on rice crops and paddocks late at night and into the early hours of the morning, when the satellite is passing over Australia.

The boundary of the field, the tractor's path and the start and end point of where it can turn are all programmed on a computer inside its cab.

This is to ensure the tractor doesn't veer off into a fence or an irrigation channel.

The CRC's Phil Collier says the technology's application won't be limited to precision farming.

"From mining to automated guidance of cars, anything where there's a level of machine automation required that's outside, then this technology has got that ability to solve that problem.

"My prediction, if I can be so bold, is that this sort of technology will move from sophisticated installations in machines like this to mobile phones in due course and people will have it in their back pocket."

The Japanese Government intends to deploy another three satellites in the near future, which will give Australia 24 hour coverage of the advanced positioning signals, once the technology is commercialised.

WATCH VIDEO


Source: ABC

3-D printed Shelby Cobra

Written By Unknown on Wednesday, January 14, 2015 | 3:55 AM

This Shelby Cobra sports car, 3D-printed at Department of Energy's Manufacturing Demonstration Facility at Oak Ridge National Laboratory, will be on display this week at the Detroit Auto Show Technology Showcase. Credit: Image courtesy of Oak Ridge National Laboratory
With a 3-D printed twist on an automotive icon, the Department of Energy's Oak Ridge National Laboratory is showcasing additive manufacturing research at the 2015 North American International Auto Show in Detroit.

ORNL's newest 3-D printed vehicle pays homage to the classic Shelby Cobra in celebration of the racing car's 50th anniversary. The 3-D printed Shelby will be on display January 12-15 as part of the show's inaugural Technology Showcase.

Researchers printed the Shelby car at DOE's Manufacturing Demonstration Facility at ORNL using the Big Area Additive Manufacturing (BAAM) machine, which can manufacture strong, lightweight composite parts in sizes greater than one cubic meter. The approximately 1400-pound vehicle contains 500 pounds of printed parts made of 20 percent carbon fiber.
Recent improvements to ORNL's BAAM machine include a smaller print bead size, resulting in a smoother surface finish on the printed pieces. Subsequent work by Knoxville-based TruDesign produced a Class A automotive finish on the completed Shelby.

"Our goal is to demonstrate the potential of large-scale additive manufacturing as an innovative and viable manufacturing technology," said Lonnie Love, leader of ORNL's Manufacturing Systems Research group. "We want to improve digital manufacturing solutions for the automotive industry."

The team took six weeks to design, manufacture and assemble the Shelby, including 24 hours of print time. The new BAAM system, jointly developed by ORNL and Cincinnati Incorporated, can print components 500 to 1000 times faster than today's industrial additive machines. ORNL researchers say the speed of next-generation additive manufacturing offers new opportunities for the automotive industry, especially in prototyping vehicles.

"You can print out a working vehicle in a matter of days or weeks," Love said. "You can test it for form, fit and function. Your ability to innovate quickly has radically changed. There's a whole industry that could be built up around rapid innovation in transportation."

The Shelby project builds on the successful completion of the Strati, a fully 3-D printed vehicle created through a collaboration between Local Motors and ORNL.

The lab's manufacturing and transportation researchers plan to use the 3-D printed Shelby as a laboratory on wheels. The car is designed to "plug and play" components such as battery and fuel cell technologies, hybrid system designs, power electronics, and wireless charging systems, allowing researchers to easily and quickly test out new ideas.

Source: Oak Ridge National Laboratory

Storing hydrogen underground could boost transportation, energy security

Written By Unknown on Sunday, December 14, 2014 | 8:08 PM

Salt caverns such as the one depicted here could provide a low-cost solution for the geologic storage of hydrogen. The colors in the illustration represent depth, with blue as the deepest part of the cavern and red the most shallow.
Credit: Sandia National Laboratories
Large-scale storage of low-pressure, gaseous hydrogen in salt caverns and other underground sites for transportation fuel and grid-scale energy applications offers several advantages over above-ground storage, says a recent Sandia National Laboratories study sponsored by the Department of Energy's Fuel Cell Technologies Office.

Geologic storage of hydrogen gas could make it possible to produce and distribute large quantities of hydrogen fuel for the growing fuel cell electric vehicle market, the researchers concluded.

Geologic storage solutions can service a number of key hydrogen markets since "costs are more influenced by the geology available rather than the size of the hydrogen market demand," said Sandia's Anna Snider Lord, the study's principal investigator.

The work, Lord said, could provide a roadmap for further research and demonstration activities, such as an examination of environmental issues and geologic formations in major metropolitan areas that can hold gas. Researchers could then determine whether hydrogen gas mixes with residual gas or oil, reacts with minerals in the surrounding rock or poses any environmental concerns.

Storage seen as key to realizing hydrogen's market growth

Should the market demands for hydrogen fuel increase with the introduction of fuel cell electric vehicles, the U.S. will need to produce and store large amounts of cost-effective hydrogen from domestic energy sources, such as natural gas, solar and wind, said Daniel Dedrick, Sandia hydrogen program manager.

As Toyota, General Motors, Hyundai and others move ahead with plans to develop and sell or lease hydrogen fuel cell electric vehicles, practical storage of hydrogen fuel at large scale is nessesary to enable widespread hydrogen-powered transportation infrastructure. Such storage options, Dedrick said, are needed to realize the full potential of hydrogen for transportation.

Additionally, installation of electrolyzer systems on electrical grids for power-to-gas applications, which integrate renewable energy, grid services and energy storage will require large-capacity, cost-effective hydrogen storage.

Storage above ground requires tanks, which cost three to five times more than geologic storage, Lord said. In addition to cost savings, underground storage of hydrogen gas offers advantages in volume. "Above-ground tanks can't even begin to match the amount of hydrogen gas that can be stored underground," she said.
The massive quantities of hydrogen that is stored in geologic features can subsequently be distributed as a high-pressure gas or liquid to supply hydrogen fuel markets.

Model helps identify the most favorable storage locations
While geologic storage may prove to be a viable option, several issues need to be explored, said Lord, including permeability of various geologic formations.

A geologist in Sandia's geotechnology and engineering group, Lord for years has been involved in the geologic storage of the U.S. Strategic Petroleum Reserve, the world's largest emergency supply of crude oil.

For her study on geologic storage, Lord and her colleagues analyzed and reworked the geologic storage module of Argonne National Laboratory's Hydrogen Delivery Scenario Analysis Model. To help refine the model, Lord studied storing hydrogen in salt caverns to meet peak summer driving demand for four cities: Los Angeles, Houston, Pittsburgh and Detroit.

She determined that 10 percent above the average daily demand for 120 days should be stored. She then modeled how much hydrogen each city would need if hydrogen met 10, 25 and 100 percent of its driving fuel needs.

Los Angeles has three times the population of Detroit and more than six and a half times the population of Pittsburgh, but the nearest salt formations are in Arizona, so Lord included the cost of getting the stored hydrogen from Arizona to Los Angeles.

Even so, Los Angeles' modeled costs are significantly less than those for Detroit and Pittsburgh. Salt formations in Arizona are thicker than those for Detroit and Pittsburgh, with larger and fewer caverns. Houston has the best conditions of the four cities because the Gulf Coast offers large, deep salt formations.

To examine the cost of geologic hydrogen storage, Lord started by selecting geologic formations that currently store natural gas. Working with Sandia economist Peter Kobos, Lord analyzed costs to store hydrogen gas in depleted oil and gas reservoirs, aquifers, salt caverns and hard rock caverns.

Their paper, "Geologic storage of hydrogen: Scaling up to meet city transportation demands," was published in the International Journal of Hydrogen Energy.

A geologic solution for peak period storage
Other fuels are already stored geologically. Oil from the Strategic Petroleum Reserve, for example, is held in large man-made caverns along the Gulf Coast. Natural gas is stored in more than 400 geologic sites to meet winter heating demands.

Lord envisions that excess hydrogen produced throughout the year could be brought to geologic storage sites and then piped to cities during the summer, when the demand for driving fuels peaks.

Depleted oil and gas reservoirs and aquifers initially seem the most economically attractive options, she said. "Just looking at numbers, because they can hold such a larger volume relative to any cavern you create, they look cheaper," she said.

But hydrogen gas is a challenging substance to store. "Because it's a smaller molecule than methane, for example, it has the potential to leak easier and move faster through the rock," Lord said.

Depleted oil and gas reservoirs and aquifers could leak hydrogen, and cycling -- filling a storage site, pulling hydrogen out for use and refilling the site -- can't be done more than once or twice a year to preserve the integrity of the rock formation, Lord said.
With a salt cavern or hard rock cavern, "there are no permeability issues, there's really no way anything can leak," she said. "You can bring more product in and out, and that will, in the long run, decrease your costs."

Hard rock caverns are relatively unproven; only one site holds natural gas. But salt caverns, which are created 1,000 to 6,000 feet below ground by drilling wells in salt formations, pumping in undersaturated water to dissolve the salt, then pumping out the resulting brine, are used more extensively and already store hydrogen on a limited scale, Lord said.

Future challenges

Lord said her work could lead to demonstration projects to further cement the viability of underground hydrogen storage. Salt caverns are the logical choice for a pilot project due to their proven ability to hold hydrogen, she said. Environmental concerns such as contamination could also be further analyzed.

However, salt formations are limited. None exist in the Pacific Northwest, much of the East Coast and much of the South, except for the Gulf Coast area. Other options are needed for development of a nationwide hydrogen storage system.

Lord's work adds to Sandia's capabilities and decades of experience in hydrogen and fuel cells systems. Sandia leads a number of other hydrogen research efforts, including the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) project co-led by the National Renewable Energy Laboratory (NREL), a maritime fuel cell demonstration, a development project focused on hydrogen-powered forklifts and a recent study of how many California gas stations can safely store and dispense hydrogen.

Source: Sandia National Laboratories
 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. The planet wall - All Rights Reserved
Template Created by Easy Blogging Published by Mas Template
Proudly powered by Blogger