Latest Post
Showing posts with label SPACE NEWS. Show all posts
Showing posts with label SPACE NEWS. Show all posts

Space Hubble's Little Sombrero

Written By Unknown on Friday, February 6, 2015 | 6:54 PM

European Space Agency Credit: ESA/Hubble & NASA
         European Space Agency Credit: ESA/Hubble & NASA

Galaxies can take many shapes and be oriented any way relative to us in the sky. This can make it hard to figure out their actual morphology, as a galaxy can look very different from different viewpoints. A special case is when we are lucky enough to observe a spiral galaxy directly from its edge, providing us with a spectacular view like the one seen in this picture of the week.

This is NGC 7814, also known as the “Little Sombrero.” Its larger namesake, the Sombrero Galaxy, is another stunning example of an edge-on galaxy — in fact, the “Little Sombrero” is about the same size as its bright namesake at about 60,000 light-years across, but as it lies farther away, and so appears smaller in the sky.

NGC 7814 has a bright central bulge and a bright halo of glowing gas extending outwards into space. The dusty spiral arms appear as dark streaks. They consist of dusty material that absorbs and blocks light from the galactic center behind it. The field of view of this NASA/ESA Hubble Space Telescope image would be very impressive even without NGC 7814 in front; nearly all the objects seen in this image are galaxies as well. 

Source: Nasa



UCLA and CASIS to collaborate on International Space Station study of possible therapy for bone loss

Written By Unknown on Saturday, January 31, 2015 | 7:38 PM

A study of rodents on the International Space Station will allow astronauts to test the ability of a bone-forming molecule to direct stem cells to induce bone formation. Credit: Nasa
UCLA has received grant funding from the Center for the Advancement of Science in Space to lead a research mission that will send rodents to the International Space Station. The mission will allow astronauts on the space station and scientists on Earth to test a potential new therapy for accelerating bone growth in humans. 

The research will be led by Dr. Chia Soo, a UCLA professor of plastic and reconstructive surgery and orthopaedic surgery who is member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. Soo also is the research director for UCLA Operation Mend, which provides medical care for wounded warriors.

The study will test the ability of a bone-forming molecule called NELL-1 to direct stem cells to induce bone formation and prevent bone degeneration. Their work will build upon previous UCLA studies that were funded by the NIH.

Other members of the UCLA research team are Dr. Kang Ting, a professor of dentistry who discovered NELL-1 and is leading efforts to translate NELL-1 therapy to humans; Dr. Ben Wu, a professor of bioengineering and dentistry who modified the NELL-1 molecule to make it useful for treating osteoporosis; and Dr. Jin Hee Kwak, an assistant professor of dentistry who will manage the study’s daily operations.

Prolonged space flights induce extreme changes in bone and organ systems that cannot be replicated on Earth.

The UCLA–ISS team, which will begin ground operations in early 2015, hopes that the study will provide new insights into the prevention of bone loss or osteoporosis as well as the regeneration of massive bone defects that can occur in wounded military personnel. Osteoporosis is a significant health issue commonly associated with “skeletal disuse” conditions such as immobilization, stroke, cerebral palsy, muscular dystrophy, spinal cord injury and jaw resorption after tooth loss.

“NELL-1 holds tremendous hope not only for preventing bone loss, but one day even restoring healthy bone,” Ting said. “For patients who are bed-bound and suffering from bone loss, it could be life-changing.” 

The UCLA team will oversee the ground operations of the mission in tandem with a flight operation coordinated by CASIS and NASA.  

“A group of 40 rodents will be sent to the International Space Station U.S. National Laboratory onboard the SpaceX Dragon capsule, where they will live for two months in a microgravity environment during the first ever test of NELL-1 in space,” said Dr. Julie Robinson, NASA’s chief scientist for the International Space Station program at the Johnson Space Center.

“CASIS is proud to work alongside UCLA in an effort to promote the station as a viable platform for bone loss inquiry,” said Warren Bates, director of portfolio management for CASIS. “Through investigations like this, we hope to make profound discoveries and enable the development of therapies to counteract bone loss ailments common in humans.”

“Besides testing the limits of NELL-1’s robust bone-producing effects, this mission will provide new insights about bone biology and could uncover important clues for curing diseases such as osteoporosis,” Wu said. 

“NIH has been pleased to work with NASA and CASIS to encourage the use of the International Space Station as a unique microgravity environment that can test innovative hypotheses that will benefit human health on Earth,” said Dr. Joan A. McGowan, director of the division of musculoskeletal diseases at the National Institute of Arthritis and Musculoskeletal and Skin Diseases, part of the NIH.

“This research has enormous translational application for astronauts in space flight and for patients on Earth who have osteoporosis or other bone-loss problems from disease, illness or trauma,” Soo said. “We very much appreciate the dedicated review staff at CASIS and the Center for Scientific Review, the portal for NIH grant applications, who made this effort possible.”

The research is supported by grants from the Center for the Advancement of Science in Space and National Institutes of Health. Additional funding and support are provided by the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, the UCLA School of Dentistry, UCLA department of orthopaedic surgery and the UCLA Orthopaedic Hospital Research Center.

Source: UCLA

NASA's Dawn Spacecraft Captures Best-Ever View of Dwarf Planet

This animation of the dwarf planet Ceres was made by combining images taken by the Dawn spacecraft on January 25, 2015.
NASA's Dawn spacecraft has returned the sharpest images ever seen of the dwarf planet Ceres. The images were taken 147,000 miles (237,000 kilometers) from Ceres on Jan. 25, and represent a new milestone for a spacecraft that soon will become the first human-made probe to visit a dwarf planet.

"We know so little about our vast solar system, but thanks to economical missions like Dawn, those mysteries are being solved," said Jim Green, Planetary Science Division Director at NASA Headquarters in Washington.

At 43 pixels wide, the new images are more than 30 percent higher in resolution than those taken by NASA's Hubble Space Telescope in 2003 and 2004 at a distance of over 150 million miles (about 241 million kilometers). The resolution is higher because Dawn is traveling through the solar system to Ceres, while Hubble remains fixed in Earth orbit. The new Dawn images come on the heels of initial navigation images taken Jan. 13 that reveal a white spot on the dwarf planet and the suggestion of craters. Hubble images also had glimpsed a white spot on the dwarf planet, but its nature is still unknown.

"Ceres is a 'planet' that you've probably never heard of," said Robert Mase, Dawn project manager at NASA's Jet Propulsion Laboratory in Pasadena, California. "We're excited to learn all about it with Dawn and share our discoveries with the world."

As the spacecraft gets closer to Ceres, its camera will return even better images. On March 6, Dawn will enter into orbit around Ceres to capture detailed images and measure variations in light reflected from Ceres, which should reveal the planet's surface composition.

"We are already seeing areas and details on Ceres popping out that had not been seen before. For instance, there are several dark features in the southern hemisphere that might be craters within a region that is darker overall," said Carol Raymond, deputy principal investigator of the Dawn mission at JPL. "Data from this mission will revolutionize our understanding of this unique body. Ceres is showing us tantalizing features that are whetting our appetite for the detailed exploration to come."

Ceres, the largest body between Mars and Jupiter in the main asteroid belt, has a diameter of about 590 miles (950 kilometers). Some scientists believe the dwarf planet harbored a subsurface ocean in the past and liquid water may still be lurking under its icy mantle.

Originally described as a planet, Ceres was later categorized as an asteroid, and then reclassified as a dwarf planet in 2006. The mysterious world was discovered in 1801 by astronomer Giuseppe Piazzi, who named the object for the Roman goddess of agriculture, grain crops, fertility and motherly relationships.

"You may not realize that the word 'cereal' comes from the name Ceres. Perhaps you already connected with the dwarf planet at breakfast today," said JPL's Marc Rayman, mission director and chief engineer of the Dawn mission.

Powered by a uniquely capable ion propulsion system, Dawn also orbited and explored Vesta, the second most massive body in the asteroid belt. From 2011 to 2012, Dawn returned more than 30,000 images, 18 million light measurements and other scientific data about the impressive large asteroid. Vesta has a diameter of about 326 miles (525 kilometers).

"With the help of Dawn and other missions, we are continually adding to our understanding of how the solar system began and how the planets were formed," said Chris Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles.

Dawn's mission to Vesta and Ceres is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital Sciences Corp. of Dulles, Virginia, designed and built the spacecraft. JPL is managed for NASA by the California Institute of Technology in Pasadena.

The framing cameras were provided by the Max Planck Institute for Solar System Research in Gottingen, Germany, with significant contributions by the German Aerospace Center (DLR) Institute of Planetary Research in Berlin, and in coordination with the Institute of Computer and Communication Network Engineering in Braunschweig.

The visible and infrared mapping spectrometer was provided by the Italian Space Agency and the Italian National Institute for Astrophysics, was built by Selex ES, and is managed by Italy's National Institute for Astrophysics and Planetology in Rome. The gamma ray and neutron detector was built by Los Alamos National Laboratory in New Mexico, and is operated by the Planetary Science Institute of Tucson, Arizona.

Source: Nasa

Black hole on a diet creates a 'changing look' quasar

Written By Unknown on Thursday, January 29, 2015 | 1:40 AM

This artist's rending shows "before" and "after" images of a changing look quasar.
Credit: By Jim Shelton
Yale University astronomers have identified the first “changing look” quasar, a gleaming object in deep space that appears to have its own dimmer switch.

The discovery may offer a glimpse into the life story of the universe’s great beacons.

Quasars are massive, luminous objects that draw their energy from black holes. Until now, scientists have been unable to study both the bright and dim phases of a quasar in a single source.

As described in an upcoming edition of The Astrophysical Journal, Yale-led researchers spotted a quasar that had dimmed by a factor of six or seven, compared with observations from a few years earlier.

“We’ve looked at hundreds of thousands of quasars at this point, and now we’ve found one that has switched off,” said C. Megan Urry, Yale’s Israel Munson Professor of Astronomy and Astrophysics, and the study’s co-author. “This may tell us something about their lifetimes.”

Stephanie LaMassa, a Yale associate research scientist and principal investigator for the study, noticed the phenomenon during an ongoing probe of Stripe 82 — a sliver of the sky found along the Celestial Equator. Stripe 82 has been scanned in numerous astronomical surveys, including the Sloan Digital Sky Survey.

“This is like a dimmer switch,” LaMassa said. “The power source just went dim. Because the life cycle of a quasar is one of the big unknowns, catching one as it changes, within a human lifetime, is amazing.”

Even more significant for astronomers was the weakening of the quasar’s broad emission lines. Visible on the optical spectrum, these broad emission lines are signatures of gas that is too distant to be consumed by a black hole, yet close enough to be “excited” by energy from material that does fall into a black hole.

The change in the emission lines is what told researchers that the black hole had essentially gone on a diet, and was giving off less energy as a result. That’s when the “changing look” quasar hit its dimmer switch, and most of its broad emission lines disappeared.

The Yale team analyzed a variety of observation data, including recent optical spectra information and archival optical photometry and X-ray spectra information. They needed to rule out the possibility the quasar merely appeared to lose brightness, due to a gas cloud or other object passing in front of it.

The findings may prove invaluable on several fronts. First, they provide direct information about the intermittent nature of quasar activity; even more intriguingly, they hint at the sporadic activity of black holes.

“It makes a difference to know how black holes grow,” Urry said, noting that all galaxies have black holes, and quasars are a phase that black holes go through before becoming dormant. “This perhaps has implications for how the Milky Way looks today.”

Additionally, there is the chance the quasar may fire up again, showing astronomers yet another changing look.

“Even though astronomers have been studying quasars for more than 50 years, it’s exciting that someone like me, who has studied black holes for almost a decade, can find something completely new,” LaMassa said.

(Illustration by Michael S. Helfenbein)

Source: Yale university

The state of astronomy before Hubble and the difficulties of observing from the ground that drove the need for a space telescope' Videos

Written By Unknown on Wednesday, January 28, 2015 | 5:32 PM

This video looks at the state of astronomy before Hubble and the difficulties of observing from the ground that drove the need for a space telescope. Image Credit: Space Telescope Science Institute
Dr. Nancy Grace Roman, first chief astronomer at NASA’s then Office of Space Science and the one who set up NASA’s astronomy program in the 1960s, speaks about the importance of building and launching a space telescope instead of building duplicates of the Earth-based Palomar 200-inch telescope.

"Astronomers have wanted for generations actually to get a telescope above the atmosphere,” Roman said. “I like to describe the atmosphere being something like looking through an old stained glass window… The glass has defects in it and that sort of keeps you from getting a sharp picture and the atmosphere also has defects." 

"The very sharp images it would produce would allow you to see things that were much fainter than would ever be possible from the ground," said C. Robert O'Dell, of Vanderbilt University in Nashville, Tennessee. O'Dell leads a research team that used Hubble and several ground-based telescopes to obtain the best view yet of the iconic Ring Nebula.
The video addresses several challenges at the time of Hubble's creation, including digital imaging at a time when the industry was in its infancy. The video also speaks on how the telescope has far exceeded its initial life-span.

The 4 minute and 23 second video was produced by STScI. The "Hubble 25th Anniversary" video series is available in HQ, large and small Quicktime formats, HD, large and small WMV formats, and HD, large and small Xvid formats.

WATCH VIDEO HERE



Source: Nasa Hubble

Black holes follow the rules

Artist's impression of a black hole at the centre of a galaxy. Credit: Gabriel Pérez Díaz.
Rather than having random sizes, massive black holes seem to follow a predictable rule in relation to the physical properties of the galaxy in which they are located.

Research at Swinburne University of Technology has shown that it is possible to predict the masses of black holes in galaxies for which it was previously thought not possible.

In large galaxies, the central black hole is related to the mass of the spheroid-shaped distribution of stars at the centre of the galaxy, known as the galaxy’s 'bulge'.

Some astronomers have claimed that the size of black holes at the centres of galaxies with small bulges was unrelated to the bulge.

Even the four million solar mass black hole in the bulge of our Milky Way galaxy was thought to be arbitrarily low relative to trends defined by their more massive, and therefore easier to detect, counterparts.

However, in previous work Swinburne Professor Alister Graham, lead-author of the current research, identified a new relationship involving black holes in galaxies with small bulges.  He demonstrated that the black hole in the bulge of the Milky Way was not set by chance but instead followed an astronomical rule.

“The formula is quadratic, in that the black hole mass quadruples every time the bulge mass doubles,” Professor Graham said. “Therefore, if the bulge mass increases 10 times, the black hole mass increases 100 times.”

Now, after studying more than 100 galaxies with black holes 4 to 40 times less massive than our Milky Way's black hole, they too have been found to follow this same rule.

"It turns out that there is yet more order in our Universe than previously appreciated,” Professor Graham said.

"This is exciting not just because it provides further insight into the mechanics of black hole formation, but because of the predictions it allows us to make."

The gravitational collapse of massive stars can produce black holes up to a few tens of times the mass of our Sun. And black holes that are one-tenth of a million to ten billion times the mass of our Sun have been identified at the centres of giant galaxies. However, there is a missing population of intermediate-mass black holes.

Astronomers don't know if this is because of observational difficulties in finding them, or if the massive black holes at the centres of galaxies start life as 100,000 solar mass seed black holes that formed in the early Universe.

This latest result, which extends the new rule to 40-times lower masses, gives astronomers some confidence that it may extend even further, so the smallest bulges might host these missing intermediate-mass black holes. 

"If confirmed, it would imply tremendous black hole appetites", co-author of the study, Dr Nicholas Scott, said. "There would need to be a dramatic growth of these small black holes relative to their host bulge, with the bulges growing via the creation of stars out of gas clouds while the black holes devour both gas and stars."

The researchers have identified a few dozen candidate galaxies in which they think intermediate-mass black holes may be hiding.  Future observations, with facilities such as the Square Kilometre Array and space-based X-ray telescopes, are expected to help resolve this black hole mystery.

Source: Swinburne

The Cosmic radio burst caught red-handed

Written By Unknown on Monday, January 26, 2015 | 6:59 PM

A schematic illustration of CSIRO’s Parkes radio telescope receiving the polarised signal from the new ‘fast radio burst’. Credit: Swinburne Astronomy Productions.
Pasadena, CA— Fast radio bursts are quick, bright flashes of radio waves from an unknown source in space. They are a mysterious phenomenon that last only a few milliseconds, and until now they have not been observed in real time. An international team of astronomers, including three from the Carnegie Observatories, has for the first time observed a fast radio burst happening live. Their work is published in Monthly Notices of the Royal Astronomical Society.

There is a great deal of scientific interest in fast radio bursts, particularly in uncovering their origin.

“These events are one of the biggest mysteries in the Universe” noted Carnegie Observatories' Acting Director John Mulchaey. “Until now, astronomers were not able to catch one of these events in the act.”

Only seven fast radio bursts have previously been discovered, since the first one found in 2007. All were found retroactively by combing through data from the Parkes radio telescope in eastern Australia and the Arecibo telescope in Puerto Rico.

“These bursts were generally discovered weeks or months or even more than a decade after they happened! We’re the first to catch one in real time,” said Emily Petroff, a PhD candidate from Swinburne University of Technology in Melbourne, Australia and lead author of the publication.
Swinburne is a member institution of the ARC Centre of Excellence for All-sky Astrophysics (CAASTRO).

In order to observe the fast radio burst in real time, the team mobilized 12 telescopes around the world and in space, including Carnegie’s Magellan and Swope telescopes. Each telescope followed-up on the original burst observation at different wavelengths.

Measurements of the interaction between previously detected fast radio burst’s flashes and the free electrons their signals encountered in space as they traveled to reach us had previously indicated that the bursts likely originated far outside of our galaxy. But the idea was controversial.

The team’s data indicates that the burst originated up to 5.5 billion light years away. This means that the sources of theses bursts are extremely bright and could perhaps be used as a cosmological tool for measuring and understanding our universe once we come to understand them better.

“Together, our observations allowed the team to rule out some of the previously proposed sources for the bursts, including nearby supernovae,” explained Carnegie’s Mansi Kasliwal who was on the team along with Mulchaey and colleague Yue Shen. “Short gamma-ray bursts are still a possibility, as are distant magnetic neutron stars called magnetars, but not long gamma ray bursts.”

Gamma ray bursts are high-energy explosions that form some of the brightest celestial events. Long bursts can signify energy released during a supernova and are followed by an afterglow, which emits lower wavelength radiation than the original explosion.

Another interesting piece of information the team was able to gather about the burst is its polarization. The orientation of the radio waves indicates that the burst likely originated near or passed through a magnetic field, information that can help narrow down potential sources going forward.

“As we continue to search for the source of fast radio bursts, Carnegie is well positioned to make big strides in the field,” Mulchaey said. “Quick access to big telescopes like Magellan may be the key to solving this mystery.”

Caption: A schematic illustration of CSIRO’s Parkes radio telescope receiving the polarised signal from the new fast radio burst. Image is credited to Swinburne Astronomy Productions.

Other co-authors are: M. Bailes (Swinburne University of Technology and ARC Centre of Excellence for All-sky Astrophysics); E.D. Barr (Swinburne University of Technology and ARC Centre of Excellence for All-sky Astrophysics); B. R. Barsdell (Harvard-Smithsonian Center for Astrophysics); N. D. R. Bhat (ARC Centre of Excellence for All-sky Astrophysics and Curtin University) ; F. Bian (Australian National University); S. Burke-Spolaor (Caltech); M. Caleb(Australian National University, Swinburne University of Technology, ARC Centre of Excellence for All-sky Astrophysics); D. Champion (Max Planck Institut für Radioastronomie); P. Chandra (Tata Institute of Fundamental Research Pune University Campus); G. Da Costa (Australian National University); C. Delvaux (Max-Planck-Institut für extraterrestrische Physik); C. Flynn (Swinburne University of Technology and ARC Centre of Excellence for All-sky Astrophysics); N. Gehrels (NASA Goddard Space Flight Center); J. Greiner (Max-Planck-Institut für extraterrestrische Physik); A. Jameson (Swinburne University of Technology and ARC Centre of Excellence for All-sky Astrophysics); S. Johnston (CSIRO Astronomy & Space Science Australia Telescope National Facility); E. F. Keane (Swinburne University of Technology and ARC Centre of Excellence for All-sky Astrophysics); S. Keller (Australian National University); J. Kocz (Harvard-Smithsonian Center for Astrophysics and Jet Propulsion Laboratory, Caltech); M. Kramer (Max Planck Institut für Radioastronomie and University of Manchester) G. Leloudas (University of Copenhagen and Weizmann Institute of Science); D. Malesani (University of Copenhagen); C. Ng (Max Planck Institut für Radioastronomie); E. O. Ofek (Weizmann Institute of Science); D. A. Perley (Caltech); A. Possenti (Osservatorio Astronomico di Cagliari); B. P. Schmidt (Australian National University and ARC Centre of Excellence for All-sky Astrophysics); B. Stappers (University of Manchester); P. Tisserand (Australian National University and ARC Centre of Excellence for All-sky Astrophysics); W. van Straten (Swinburne University of Technology and ARC Centre of Excellence for All-sky Astrophysics ); and C. Wolf (Australian National University and ARC Centre of Excellence for All-sky Astrophysics).

The Parkes radio telescope and the Australia Telescope Compact Array are part of the Australia Telescope National Facility, which is funded by the Commonwealth of Australia for operation as a National Facility and managed by CSIRO. Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO). GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. Research with the ANU SkyMapper telescope is supported in part through an ARC Discovery Grant. Part of the funding for GROND was granted from a Leibniz-Prize. The Dark Cosmology Centre is supported by the Danish National Research council. Other support came from Curtin Research Fellowship;, EXTraS, funded from the European Union's Seventh Framework Programme for research, technological development and demonstration; Hubble Fellowships; a Carnegie-Princeton Fellowship; the Arye Dissentshik career development; the Willner Family Leadership Institute Ilan Gluzman (Secaucus, N.J.), the Israeli Ministry of Science; Israel Science Foundation; Minerv;, Weizmann-UK; the I-CORE Program of the Planning and Budgeting Committee.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

watch video


Source: Royal Astronomical Society

Gecko grippers get a microgravity test flight

Written By Unknown on Monday, December 29, 2014 | 5:57 AM

Scientists at NASA's Jet Propulsion Laboratory in Pasadena, California, are working on adhesive gripping tools that could grapple objects such as orbital debris or defunct satellites that would otherwise be hard to handle.
Credit: Image courtesy of NASA/Jet Propulsion Laboratory
There are no garbage trucks equipped to leave the atmosphere and pick up debris floating around Earth. But what if we could send a robot to do the job?

Scientists at NASA's Jet Propulsion Laboratory in Pasadena, California, are working on adhesive gripping tools that could grapple objects such as orbital debris or defunct satellites that would otherwise be hard to handle.

The gecko gripper project was selected for a test flight through the Flight Opportunities Program of NASA's Space Technology Mission Directorate. As a test, researchers used the grippers in brief periods of weightlessness aboard NASA's C-9B parabolic flight aircraft in August.

"Orbital debris is a serious risk to spacecraft, including the International Space Station," said Aaron Parness, a JPL robotics researcher who is the principal investigator for the grippers. "This is definitely a problem we're going to have to deal with. Our system might one day contribute to a solution."

The gripping system developed by Parness and colleagues was inspired by geckos, lizards that cling to walls with ease. Geckos' feet have branching arrays of tiny hairs, the smallest of which are hundreds of times thinner than a human hair. This system of hairs can conform to a rough surface without a lot of force. Although researchers cannot make a perfect replica of the gecko foot, they have put "hair" structures on the adhesive pads of the grippers.

The synthetic hairs, also called stalks, are wedge-shaped and have a slanted, mushroom-shaped cap. When the gripping pad lightly touches part of an object, only the very tips of the hairs make contact with that surface.

"The stickiness of the grippers can be turned on and off, by changing the direction in which you pull the hairs," Parness said.

To get the gripper to stick to a surface, force is applied to the adhesive pad material in a manner that makes the hairs bend. This increases the real area of contact between the hairs and the surface, which corresponds to greater adhesion. When the force is relaxed and the hairs go back to being upright, this process turns off the stickiness.

A phenomenon called van der Waals forces, named for Nobel Prize-winning physicist Johannes Diderik van der Waals, explains the non-permanent stickiness of the grippers, as well as gecko feet. These temporary adhesive forces happen because electrons orbiting the nuclei of atoms are not evenly spaced, creating a slight electrical charge. Such forces persist even in extreme temperature, pressure and radiation conditions.

"The reliability of van der Waals forces, even in severe environments, makes them particularly useful for space applications," Parness said.

"The system could grapple objects in space that are spinning or tumbling, and would otherwise be hard to target," he said.

In the recent tests, the grippers were able to grapple a 20-pound cube as it floated. The grippers also were able to grapple a researcher wearing a vest made of spacecraft material panels, representing a 250-pound "object." 

Members of the research team held the device with adhesive pads during the test, but the eventual idea is to integrate the grippers into a robotic arm or leg.
In total, the grippers have been tested on more than 30 spacecraft surfaces at JPL. They also have been tested successfully in a JPL thermal vacuum chamber, with total vacuum conditions and temperatures of minus 76 degrees Fahrenheit (minus 60 degrees Celsius) to simulate the conditions of space. While Parness was in graduate school at Stanford University in Palo Alto, California, the grippers were tested separately in more than 30,000 cycles of "on" and "off," with the adhesive staying strong. Several prototypes have since been designed.
There are more than 21,000 pieces of orbital debris larger than 3.9 inches (10 centimeters) in Earth's orbit. The U.S. Space Surveillance Network routinely tracks these objects. In 2009, an accidental collision occurred between an operational communications satellite and a large piece of debris, destroying the satellite.

Besides grappling orbital debris, the grippers could help inspect spacecraft or assist small satellites in docking to the International Space Station. The grippers are another example of how technology drives exploration.
The California Institute of Technology manages JPL for NASA.

The Fierce 2012 magnetic storm just missed us: Earth dodged huge magnetic bullet from the sun

Written By Unknown on Wednesday, October 29, 2014 | 12:47 AM

This image captured on July 23, 2012, at 12:24 a.m. EDT, shows a coronal mass ejection that left the sun at the unusually fast speeds of over 1,800 miles per second. Credit: NASA/STEREO
Earth dodged a huge magnetic bullet from the sun on July 23, 2012.
According to University of California, Berkeley, and Chinese researchers, a rapid succession of coronal mass ejections -- the most intense eruptions on the sun -- sent a pulse of magnetized plasma barreling into space and through Earth's orbit. Had the eruption come nine days earlier, it would have hit Earth, potentially wreaking havoc with the electrical grid, disabling satellites and GPS, and disrupting our increasingly electronic lives.

The solar bursts would have enveloped Earth in magnetic fireworks matching the largest magnetic storm ever reported on Earth, the so-called Carrington event of 1859. The dominant mode of communication at that time, the telegraph system, was knocked out across the United States, literally shocking telegraph operators. Meanwhile, the Northern Lights lit up the night sky as far south as Hawaii.

In a paper appearing today (Tuesday, March 18) in the journal Nature Communications, former UC Berkeley postdoctoral fellow and research physicist Ying D. Liu, now a professor at China's State Key Laboratory of Space Weather, UC Berkeley research physicist Janet G. Luhmann and their colleagues report their analysis of the magnetic storm, which was detected by NASA's STEREO A spacecraft.
"Had it hit Earth, it probably would have been like the big one in 1859, but the effect today, with our modern technologies, would have been tremendous," said Luhmann, who is part of the STEREO (Solar Terrestrial Observatory) team and based at UC Berkeley's Space Sciences Laboratory.

A study last year estimated that the cost of a solar storm like the Carrington Event could reach $2.6 trillion worldwide. A considerably smaller event on March 13, 1989, led to the collapse of Canada's Hydro-Quebec power grid and a resulting loss of electricity to six million people for up to nine hours.
"An extreme space weather storm -- a solar superstorm -- is a low-probability, high-consequence event that poses severe threats to critical infrastructures of the modern society," warned Liu, who is with the National Space Science Center of the Chinese Academy of Sciences in Beijing. "The cost of an extreme space weather event, if it hits Earth, could reach trillions of dollars with a potential recovery time of 4-10 years. Therefore, it is paramount to the security and economic interest of the modern society to understand solar superstorms."

Based on their analysis of the 2012 event, Liu, Luhmann and their STEREO colleagues concluded that a huge outburst on the sun on July 22 propelled a magnetic cloud through the solar wind at a peak speed of more than 2,000 kilometers per second -- four times the typical speed of a magnetic storm. It tore through Earth's orbit but, luckily, Earth and the other planets were on the other side of the sun at the time. Any planets in the line of sight would have suffered severe magnetic storms as the magnetic field of the outburst tangled with the planets' own magnetic fields.

The researchers determined that the huge outburst resulted from at least two nearly simultaneous coronal mass ejections (CMEs), which typically release energies equivalent to that of about a billion hydrogen bombs. The speed with which the magnetic cloud plowed through the solar wind was so high, they concluded, because another mass ejection four days earlier had cleared the path of material that would have slowed it down.

"The authors believe this extreme event was due to the interaction of two CMEs separated by only 10 to 15 minutes," said Joe Gurman, the project scientist for STEREO at NASA's Goddard Space Flight Center in Greenbelt, Md.

One reason the event was potentially so dangerous, aside from its high speed, is that it produced a very long-duration, southward-oriented magnetic field, Luhmann said. This orientation drives the largest magnetic storms when they hit Earth because the southward field merges violently with Earth's northward field in a process called reconnection. Storms that normally might dump their energy only at the poles instead dump it into the radiation belts, ionosphere and upper atmosphere and create auroras down to the tropics.

"These gnarly, twisty ropes of magnetic field from coronal mass ejections come blasting from the sun through the ambient solar system, piling up material in front of them, and when this double whammy hits Earth, it skews the Earth's magnetic field to odd directions, dumping energy all around the planet," she said. "Some of us wish Earth had been in the way; what an experiment that would have been."
"People keep saying that these are rare natural hazards, but they are happening in the solar system even though we don't always see them," she added. "It's like with earthquakes -- it is hard to impress upon people the importance of preparing unless you suffer a magnitude 9 earthquake."

All this activity would have been missed if STEREO A -- the STEREO spacecraft ahead of us in Earth's orbit and the twin to STEREO B, which trails in our orbit -- had not been there to record the blast.

The goal of STEREO and other satellites probing the magnetic fields of the sun and Earth is to understand how and why the sun sends out these large solar storms and to be able to predict them during the sun's 11-year solar cycle. This event was particularly unusual because it happened during a very calm solar period.

"Observations of solar superstorms have been extremely lacking and limited, and our current understanding of solar superstorms is very poor," Liu said. "Questions fundamental to solar physics and space weather, such as how extreme events form and evolve and how severe it can be at the Earth, are not addressed because of the extreme lack of observations."

Source: University of California - Berkeley

 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. The planet wall - All Rights Reserved
Template Created by Easy Blogging Published by Mas Template
Proudly powered by Blogger