Latest Post
Showing posts with label CARBON CYCLE. Show all posts
Showing posts with label CARBON CYCLE. Show all posts

Scientist to Gather Greenhouse Gas Emissions from Melting Permafrost

Written By Unknown on Saturday, February 7, 2015 | 3:44 AM

Goddard scientist Emily Wilson poses here with an early version or prototype of her recently miniaturized laser heterodyne radiometer — an instrument for which she received a patent in 2014. Image Credit: NASA
Goddard scientist Emily Wilson poses here with an early version or prototype of her recently miniaturized laser heterodyne radiometer — an instrument for which she received a patent in 2014. Image Credit: NASA

A NASA scientist who has developed a novel suitcase-size instrument to measure column carbon dioxide and methane is taking her recently patented instrument on the road this summer to comprehensively measure emissions of these important greenhouse gases from Alaska’s melting permafrost. 

Emily Wilson, a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will use her recently patented miniaturized laser heterodyne radiometer (mini-LHR) to carry out a multi-disciplinary field campaign at three sites — each representing a different type of permafrost — near Fairbanks, Alaska, in June. Her team has designed a unique and comprehensive experiment that records permafrost depth and structure, meteorological data, and concentrations of methane and carbon dioxide during the seasonal ground melt.

Multi-Disciplinary Approach

“With the global mean temperature rising, the release of these gases could create an amplified effect,” she said. “These data will allow us to estimate fluctuation of emissions from the melting permafrost.”

Permafrost is permanently frozen soil. Comprising 24 percent of the Northern Hemisphere, permafrost contains old organic carbon deposits — some relicts from the last glaciation — that are locked up beneath the surface. Scientists have observed that more of the permafrost’s upper layer, or the active layer, is melting each summer, creating concern that the thawing could lead to the significant greenhouse-gas emissions.

Further exacerbating the situation is the fact that while methane doesn’t linger as long as carbon dioxide in the atmosphere, it is more potent and effective at absorbing heat, creating a positive feedback, where emissions leads to more warming, which in turn accelerates the thaw.

Highly portable, the mini-LDR is ideal for permafrost studies, Wilson said. Made up of commercially available components, the instrument literally can go anywhere to measure carbon dioxide and methane in the atmospheric column — that is, the levels of these gases in a vertical column extending from the ground to space. Currently, the only ground-based network that measures these two greenhouse gases in the atmospheric column is the Total Carbon Column Observing Network. However, the network has 22 operational sites globally, with limited coverage in the Arctic.

“We’re targeting areas where there is limited coverage,” she said.

To prepare for the campaign, Wilson made her instrument more rugged and more sensitive. She added a satellite communications port to remotely retrieve data, a thermally controlled instrument housing to protect the instrument from changing temperatures, and a solar grid and battery storage system for powering the instrument in remote locations.

Source: Nasa

Stanford scientists team with indigenous people to produce detailed carbon calculations of Amazon rainforest

Written By Unknown on Wednesday, January 28, 2015 | 6:51 AM

The late Dr. Kye Epps teaches Wapichana field researchers how to measure tree diameter, information that can then be used to calculate a tree's biomass and carbon storage.
When it comes to measuring the carbon storage potential of the Amazon forest, indigenous people might outperform sophisticated satellites.

The results from a long-term collaboration between Stanford scientists and indigenous people in Guyana suggests that traditional remote sensing techniques might be undervaluing the region's carbon storage potential by as much as 40 percent. The work could influence how indigenous people in Guyana and elsewhere manage their forests and lead to greater opportunities for these communities to engage in carbon offset programs.

The project, led by Jose Fragoso, a senior scientist in the Department of Biology at Stanford, grew out of his earlier efforts to engage indigenous peoples to gain a better understanding of ecosystems relatively undisturbed by modern civilization.

What is carbon?

The first challenge was teaching people with little to no exposure to the outside world just what carbon is. Co-author Kimberly "Kye" Epps, a postdoctoral scholar in Stanford School of Earth Sciences (who passed away during the project,) developed lesson plans for explaining that all life is based on carbon.

Epps pointed out that the black charcoal from a burnt twig is primarily carbon, and how the carbon-laden smoke enters the atmosphere and ultimately affects the global climate. The plants and trees suck carbon from the atmosphere, she explained, and store it in their trunks and leaves.

"Kye's innovative lessons helped get them to where they not only understand what carbon is, but also understand its global implications and how much they actually hold themselves on their land," said Fragoso, the senior author on the paper. "When they realized its importance, they became very invested in the work."

Next came lessons on establishing survey plots, cataloging plant species and learning how to measure plant trunk circumferences, which is a standard measurement used to calculate biomass and thus how much carbon is contained in the plot.

"The people know the trails really well, and some of them will walk two days to get to their plot and make measurements," Fragoso said. "They can make really good measurements in really isolated areas, where government workers would never get to. Generally, professional scientists will not travel these distances on foot to verify carbon estimates."

Biomass specifics

Whereas satellite observations would most likely have identified each of these plots as "forest" and assigned them a standardized value for carbon storage, Fragoso said that the field workers identified 11 habitat types with trees, each of which requires a different set of calculations for determining its carbon storage potential. Because the researchers could be more specific about the biomass of each vegetation type making up a plot, they were able to calculate that forests in Guyana contain 20 to 40 percent more carbon than previously estimated.

This difference can affect a number of different areas. For one, it means that climate models that include blanket estimations of carbon storage in lands governed by indigenous people might be missing significant data – indigenous people govern about half of all remaining undeveloped land on the planet.

Indigenous lands probably play a much larger role in the global climate than previously assumed, Fragoso said, and indigenous people need to be better represented at global climate talks. These land-owners have more carbon storage at their disposal to sell as carbon credits to governments and corporations looking to offset their greenhouse gas-producing activities.

"Having a good measurement of carbon storage really helps them to enter into discussions with the national government and surrounding communities," Fragoso said. "This helps them to both prevent global climate change while also benefiting, and that is something that the people we worked with were very interested in."

This is the first model for turning indigenous people into field researchers capable of producing scientifically rigorous calculations for carbon, said Fragoso, who is now planning to share the concept with other indigenous nations around the world.

The paper was published recently in the journal Forest Ecology and Management. The work was co-authored by Nathalie Butt of the University of Queensland, Australia, who completed Epps' work; Stanford postdoctoral fellow Takuya Iwamura; and Han Overman, a postdoc at State University of New York. While not official co-authors, Stanford professors Peter Vitousek and Pamela Matson were instrumental in providing guidance for Epps' work.

Source: Stanford

Live fast, die young: Soil microbes in a warmer world

Written By Unknown on Tuesday, December 23, 2014 | 5:36 AM

Aerial view of the Northern Minnesota landscape including numerous conifer peatlands, deciduous uplands and lakes. Credit: USDA Forest Service Northern Research Station
Warmer temperatures shorten the lifespan of soil microbes and this may affect soil carbon storage, according to a new NSF-funded study published in Nature Climate Change this week.

A research team led by Shannon Hagerty and Paul Dijkstra from Northern Arizona University measured two key characteristics of soil microbes that determine their role in the soil carbon cycle: how efficiently they use carbon to grow and how long they live. "Higher temperatures make microbes grow faster, but they also die faster," said Hagerty, who conducted the research as part of her master's degree and was lead author on the study.

Soil microbes consume organic carbon compounds in soil, use some of it to make more microbes and release the rest to the atmosphere as carbon dioxide. The efficiency with which microbes use their food to make new microbes affects how much carbon remains in soil, and how much is released back to the atmosphere. The accepted idea before this study was that microbes would become less efficient at warmer temperatures.

The scientists incubated soil from a peatland and a forest in Minnesota at different temperatures and measured the efficiency with which microbes grew. They used a new method to measure microbial efficiency: they added small amounts of sugar and tracked how individual atoms in this sugar were turned into carbon dioxide.

"Microbes process sugars in similar ways as we do," says Paul Dijkstra. "We know very well how these processes work in laboratory studies, and can predict which carbon atoms in sugar molecules end up as carbon dioxide, and which are used to build new microbes. We applied this knowledge to the microbes living in soil."

The researchers found, contrary to expectation, that temperature had no effect on how microbes utilized their food, but instead boosted microbial death. "We don't yet know why microbes are dying faster at higher temperatures. Maybe they are eaten by nematodes or mites, or they die because of viruses," said Hagerty. "We need to know more about how temperature affects microbial death."

To explore what these new findings could mean for soil carbon storage in a warming world, the team compared output from a soil model that includes the effect of temperature on microbial lifespan to models unaffected by temperature change. "Models are used to predict how soil processes change, for example, in response to climate change," said Steve Allison, coauthor from the University of California, Irvine. "If we want to predict the future correctly, we'd better use models that accurately describe these microbial processes."

Including a temperature-dependent lifespan to the model increased the amount of carbon retained in soils at warmer temperatures compared to estimates from traditional models. The study concludes that incorporating this new insight into soil models will improve our understanding of how soils influence atmospheric carbon dioxide levels and global climate.

Does this mean that with climate change, more carbon will stay in the soil? "Too early to tell," said Bruce Hungate, Director of the Center for Ecosystem Science and Society at NAU. 

"The results suggest that the biochemistry of the microbes remains the same with warmer temperature, but that predation and death become more important. This laboratory study is just the first step, identifying a potential mechanism. Now we need to study how, in the real world, and in the long-term, the processes of biochemical efficiency and lifespan will change. And nobody has done that yet."

Source: Northern Arizona University

Sunlight, not microbes, key to carbon dioxide in Arctic


Terrestrial organic matter is shown spilling into a lake. Credit: Image courtesy of Oregon State University
The vast reservoir of carbon stored in Arctic permafrost is gradually being converted to carbon dioxide (CO2) after entering the freshwater system in a process thought to be controlled largely by microbial activity.

However, a new study -- funded by the National Science Foundation and published this week in the journal Science -- concludes that sunlight and not bacteria is the key to triggering the production of CO2 from material released by Arctic soils.

The finding is particularly important, scientists say, because climate change could affect when and how permafrost is thawed, which begins the process of converting the organic carbon into CO2.

"Arctic permafrost contains about half of all the organic carbon trapped in soil on the entire Earth -- and equals an amount twice of that in the atmosphere," said Byron Crump, an Oregon State University microbial ecologist and co-author on the Science study. "This represents a major change in thinking about how the carbon cycle works in the Arctic."

Converting soil carbon to carbon dioxide is a two-step process, notes Rose Cory, an assistant professor of earth and environmental sciences at the University of Michigan, and lead author on the study. First, the permafrost soil has to thaw and then bacteria must turn the carbon into greenhouse gases -- carbon dioxide or methane. While much of this conversion process takes place in the soil, a large amount of carbon is washed out of the soils and into rivers and lakes, she said.

"It turns out, that in Arctic rivers and lakes, sunlight is faster than bacteria at turning organic carbon into CO2," Cory said. "This new understanding is really critical because if we want to get the right answer about how the warming Arctic may feedback to influence the rest of the world, we have to understand the controls on carbon cycling.

"In other words, if we only consider what the bacteria are doing, we'll get the wrong answer about how much CO2 may eventually be released from Arctic soils," Cory added.

The research team measured the speed at which both bacteria and sunlight converted dissolved organic carbon into carbon dioxide in all types of rivers and lakes in the Alaskan Arctic, from glacial-fed rivers draining the Brooks Range to tannin-stained lakes on the coastal plain. Measuring these processes is important, the scientists noted, because bacteria types and activities are variable and the amount of sunlight that reaches the carbon sources can differ by body of water.

In virtually all of the freshwater systems they measured, however, sunlight was always faster than bacteria at converting the organic carbon into CO2.

"This is because most of the fresh water in the Arctic is shallow, meaning sunlight can reach the bottom of any river -- and most lakes -- so that no dissolved organic carbon is kept in the dark," said Crump, an associate professor in Oregon State's College of Earth, Ocean, and Atmospheric Sciences. "Also, there is little shading of rivers and lakes in the Arctic because there are no trees."

Another factor limiting the microbial contribution is that bacteria grow more slowly in these cold, nutrient-rich waters.

"Light, therefore, can have a tremendous effect on organic matter," University of Michigan's Cory pointed out.

The source of all of this organic carbon is primarily tundra plants -- and it has been building up for hundreds of thousands of years, but doesn't completely break down immediately because of the Arctic's cold temperatures. Once the plant material gets deep enough into the soil, the degradation stops and it becomes preserved, much like peat.

"The level of thawing only gets to be a foot deep or so, even in the summer," Crump said. "Right now, the thaw begins not long before the summer solstice. If the seasons begin to shift with climate change -- and the thaw begins earlier, exposing the organic carbon from permafrost to more sunlight -- it could potentially trigger the release of more CO2."

The science community has not yet been able to accurately calculate how much organic carbon from the permafrost is being converted into CO2, and thus it will be difficult to monitor potential changes because of climate change, they acknowledge.

"We have to assume that as more material thaws and enters Arctic lakes and rivers, more will be converted to CO2," Crump said. "The challenge is how to quantify that."

Some of the data for the study was made available through the National Science Foundation's Arctic Long-Term Ecological Research project, which has operated in the Arctic for nearly 30 years.

Source:  Oregon State University

Kudzu can release soil carbon, accelerate global warming

This layer of decomposing knotweed will eventually form soil organic matter in invaded ecosystems.
 Credit: Image courtesy of Clemson University
Clemson University scientists are shedding new light on how invasion by exotic plant species affects the ability of soil to store greenhouse gases. The research could have far-reaching implications for how we manage agricultural land and native ecosystems.

In a paper published in the scientific journal New Phytologist, plant ecologist Nishanth Tharayil and graduate student Mioko Tamura show that invasive plants can accelerate the greenhouse effect by releasing carbon stored in soil into the atmosphere.
Since soil stores more carbon than both the atmosphere and terrestrial vegetation combined, the repercussions for how we manage agricultural land and ecosystems to facilitate the storage of carbon could be dramatic.

In their study, Tamura and Tharayil examined the impact of encroachment of Japanese knotweed and kudzu, two of North America's most widespread invasive plants, on the soil carbon storage in native ecosystems.

They found that kudzu invasion released carbon that was stored in native soils, while the carbon amassed in soils invaded by knotweed is more prone to oxidation and is subsequently lost to the atmosphere.

The key seems to be how plant litter chemistry regulates the soil biological activity that facilitates the buildup, composition and stability of carbon-trapping organic matter in soil.

"Our findings highlight the capacity of invasive plants to effect climate change by destabilizing the carbon pool in soil and shows that invasive plants can have profound influence on our understanding to manage land in a way that mitigates carbon emissions," Tharayil said.

Tharayil estimates that kudzu invasion results in the release of 4.8 metric tons of carbon annually, equal to the amount of carbon stored in 11.8 million acres of U.S. forest.
This is the same amount of carbon emitted annually by consuming 540 million gallons of gasoline or burning 5.1 billion pounds of coal.

"Climate change is causing massive range expansion of many exotic and invasive plant species. As the climate warms, kudzu will continue to invade northern ecosystems, and its impact on carbon emissions will grow," Tharayil said.

The findings provide particular insight into agricultural land-management strategies and suggest that it is the chemistry of plant biomass added to soil rather than the total amount of biomass that has the greatest influence on the ability of soil to harbor stable carbon.

"Our study indicates that incorporating legumes such as beans, peas, soybeans, peanuts and lentils that have a higher proportion of nitrogen in its biomass can accelerate the storage of carbon in soils," Tharayil said.

Thrarayil's lab is following up this research to gain a deeper understanding of soil carbon storage and invasion.

Tharayil leads a laboratory and research team at Clemson that studies how the chemical and biological interactions that take place in the plant-soil interface shape plant communities. He is also the director of Clemson's Multi-User Analytical Laboratory, which provides researchers with access to highly specialized laboratory instruments.

Source: Clemson University

Another human footprint in the ocean: Rising anthropogenic nitrate levels in North Pacific Ocean

Written By Unknown on Monday, December 15, 2014 | 10:27 PM

Hawaii Ocean Time-series Program scientists work aboard the R/V Ka'imikai-O-Kanaloa in the North Pacific Ocean. The HOT Program provided decades of data used to reconstruct historical nitrogen concentrations.
Credit: Paul Lethaby, UH SOEST
Human-induced changes to Earth's carbon cycle -- for example, rising atmospheric carbon dioxide and ocean acidification -- have been observed for decades. However, a study published this week in Science showed human activities, in particular industrial and agricultural processes, have also had significant impacts on the upper ocean nitrogen cycle.

The rate of deposition of reactive nitrogen (i.e., nitrogen oxides from fossil fuel burning and ammonia compounds from fertilizer use) from the atmosphere to the open ocean has more than doubled globally over the last 100 years. This anthropogenic addition of nitrogen has reached a magnitude comparable to about half of global ocean nitrogen fixation (the natural process by which atmospheric nitrogen gas becomes a useful nutrient for organisms). David Karl, Professor of Oceanography and Director of the Daniel K. Inouye Center for Microbial Oceanography at the University of Hawai'i, teamed up with researchers from Korea, Switzerland and the U.S. National Oceanic and Atmospheric Administration to assess changes in nitrate concentration between the 1960s and 2000s across the open North Pacific Ocean.

Their analysis, which could discern human-derived nitrogen from natural nitrogen fixation, revealed that the oceanic nitrate concentration increased significantly over the last 30 years in surface waters of the North Pacific due largely to the enhanced deposition of nitrogen from the atmosphere.

"This is a sobering result, one that I would not have predicted," said Karl. "The North Pacific is so vast it is hard to imagine that humans could impact the natural nitrogen cycle."
The researchers used ocean data in conjunction with the state-of-the-art Earth System Model to reconstruct the history of the oceanic nitrate concentration and make predictions about the future state of the North Pacific Ocean. Their assessment revealed a consistent picture of increasing nitrate concentrations, the magnitude and pattern of which can only be explained by the observed increase in atmospheric nitrogen deposition.

Enhanced nitrogen deposition has several potential ecological ramifications. Because biological activity is limited by nitrate availability in the North Pacific Ocean, the input of new nitrogen from the atmosphere may increase photosysnthesis in the sunlit layers and export of carbon-rich organic material out of the surface ocean into the deep.

"The burgeoning human population needs energy and food -- unfortunately, nitrogen pollution is an unintended consequence and not even the open ocean is immune from our daily industrial activities," said Karl.

Given the likelihood that the magnitude of atmospheric nitrogen deposition will continue to increase in the future, the North Pacific Ocean could rapidly switch to having surplus nitrate. Thus, past and future increases in atmospheric nitrogen deposition have the potential to alter the base of the marine food web; and, in the long term, the structure of the ecosystem.

In particular, the shift in nutrient availability could favor marine organisms that thrive under the high nitrate and low phosphorus conditions. If similar trends are confirmed in the Atlantic and Indian Oceans, it would constitute another example of a global-scale alteration of Earth system. Further, the findings of this study of the North Pacific highlight the need for greater controls on the emission of nitrogen compounds during combustion and agricultural processes.

Source: University of Hawaii at Manoa
 
Support : Creating Website | Johny Template | Mas Template
Copyright © 2011. The planet wall - All Rights Reserved
Template Created by Easy Blogging Published by Mas Template
Proudly powered by Blogger